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Abstract —Modern virtual reality enables an unprecedented level
of player immersion. Users often behave as they would in the
real world; there are vast fields of untapped potential in using
VR for learning and training. In particular, it can be applied
towards athletics in training both mechanical and mental skills.
Within the world of American football, such simulations already
exist, but they require extensive manual effort in creating realistic
gameplay scenarios. This work proposes and implements an
automated pipeline that allows professional and casual players
alike to tap into the existing monolithic library of in-game footage
to effortlessly generate interactive VR simulations and rapidly hone
their skills based on real gameplay.

1 PRESENTATION

The presentation is available here, or at this URL:

https://1drv.ms/v/s!AvfgQ3Qt8rgWj6w2eCKy5lDoPMF6Pw

Feel free to read the entire paper; it follows in full below.

2 INTRODUCTION

Consumer-ready virtual reality hardware that features full head and hand
tracking in 6 degrees of freedom—such as the Oculus Quest or Rift S, the
HTC Vive Pro, or the Valve Index—offers a safe, scalable way to create immersive
simulations. The very nature of an immersive technology opens up the
opportunity for innovation in any sector that lends itself to simulation. Though
the entertainment industry is the darling of VR enthusiasts, there are plenty of
horizons waiting to be broached. This work briefly explores virtual reality’s
application to education, learning, and training across many disciplines to
justify investment in the field. Then, it presents an improvement over existing
technologies specific to training quarterbacks on American football teams by
eliminating the necessity for teams of artists, coaching staff, and other experts
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to manually craft simulated plays for practicing in virtual reality. It describes
and demonstrates the algorithms that go into the transformation from 2D to VR,
presenting pain points and suggesting future improvements.

2.1VR as a Learning Medium

If a virtual reality environment fulfills a sufficient baseline of realism (McMahan
et al. 2016; Mori et al. 2012), users often feel truly “present” in the simulation,
allowing them to behave as they would in the real world (Schuemie et al.
2001). Because of that, VR is definitely far more than just a toy: it has
offered revolutionary methods for psychological research (Blascovich et al.
2002), helped people overcome anxieties (in public speaking, competition, and
other social phobias) (Klinger et al. 2005; M. North et al. 2015; Parsons and
Rizzo 2008; Stinson and Bowman 2014), and trained people in “soft skills” like
empathy and leadership (Gavarkovs 2019; Myers III 2019).

Virtual reality’s potential to improve skills is not limited to the mind; it has been
successfully applied to tasks that are physically demanding, as well. VR has
helped the elderly improve their balance (Singh et al. 2012); allowed handball
players to practice goaltending skills (Bideau et al. 2004); basketball players
practice freethrows (Covaci et al. 2012) and tactics (Tsai et al. 2017); and helped
quarterbacks practice navigating and visualizing plays and even improve their
passing (Huang et al. 2015; Sports VTS 2019).

If it’s not already abundantly clear, virtual reality offers a unique, effective way
to teach a myriad of diverse ideas and skills. The work presented here focuses
on the latter applications: virtual reality simulations for American football.

2.2 Related Work: VR Sports Simulators

Though there have been many forays into VR simulations for training athletes
(as briefly covered above), two enterprise solutions catered towards American
football stand out. They allow users to put on a VR headset and take part in a
football play; however, they take remarkably different approaches.

2.2.1QBSIM

The simulator created by Sports VTS (2019) stands at the cutting edge. With a
sensor-laden ball, high-quality visuals, and full movement tracking, it hits all of
the requirements for recreating an in-game scenario in virtual reality. The product
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Figure 1. A screencap from QBSIM’s trailer video showcasing their scenario-creation tool
(left), and a screencap of the “in-headset experience” of a football play as seen by users of

Strivr’s platform (right).

has high-quality models and animations and is supported by real professional
coaching staff and players as advisors. Their technology allows quarterbacks to
increase their “mental reps” of in-game situations.

Its shortcoming, of course, which this work begins to addressed, is that plays
still have to be defined by hand.

2.2.2 STRIVR

This company’s simulator hits a different niche: rather than create a virtual world
using 3D models, they actually capture 360° video of a real football play, then
let users relive the actual footage in a headset (STRIVR 2019). Its more oriented
towards tactics and “vision training” which the literature suggests is what truly
separates amateurs from professionals (Appelbaum and Erickson 2018).

This has natural limitations at scale: every play needs to be drawn out, organized,
shot, edited, etc. to recreate it as a simulation. Furthermore, users immediately
encounter limitations of a single point-of-view; they can’t see (or be shown)
what else is going on that they may be able to infer. Further still, the world
cannot react to user inputs; everything is pre-recorded. This tool does a great
job of teaching “football vision,” with team formations and movements being
easier to highlight and replay, but falls short in teaching a quarterback how to
physically react to a situation.
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2.2.3 3D Recreation

Work by Roberts et al. (2007) has actually almost gone all the way with the
work presented here: it presented a streamlined method to generate a 3D replay
of a football play recording. Unfortunately, that progress has been lost into the
ether; furthermore, it did not translate or apply the replays to virtual reality.
However, the curt insights into the process of recreation that could be gleaned
from abandoned demo videos were leveraged and built upon in this work.

2.3 Contribution

With an understanding of the limitations of existing technologies, the motivation
behind this work should be abundantly clear. Training scenarios can be created
with minimal user involvement by leveraging a potpourri of computer vision
algorithms. Using professional game footage guarantees strategic value in the
analyzed plays, and the massive library of footage available ensures that trainees
can rapidly iterate through scenarios without a content-creation bottleneck.

3COMPUTATIONAL PIPELINE

2D gameplay
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Figure 2. A high-level architecture of the automation pipeline, excluding the specifics of
interactivity (path interpolation, throw simulation, etc.).

3.1Video Registration

In order to ensure that all of the subsequent metrics are accurate, the perspective
introduced by the camera needs to be removed. Recreating a “top-down” view of
the play that preserves proportionality across the entire field. This is commonly
referred to as image rectification, unwarping, or registration in the context of video.

The yard lines on the field are known to be parallel (see Figure 3); thus, they
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can be used as constraints to unwarp the perspective (Matas et al. 2000).

Figure 3. Identification of the yard lines on the football field for warping the image onto a
rectilinear plane, and the use of that model to warp the image to preserve parallel lines.

Though a reliable rectification can be determined on the first few frames due
to camera stability, the introduction of rapid pans and zooms quickly leads to
degenerate homographies. This is due both to a lack of consistencies in line
detection as well as insufficient keypoint matches across frames. The pipeline
presented here is not yet robust enough to smoothly stitch the video into a
global top-down view, which heavily affects the Player Tracking quality under
significant camera motion.

3.2 Play Classification

Tracking high-level initialization data like the player starting positions, their
teams, the initial size of the field, etc. is important for an accurate simulation.
The field width is a hard-coded, per-play value, but future work could leverage
in-footage data like yard line digits and tick marks to approximate the value.

3.2.1Line of Scrimmage Detection

Figure 4. Identification of the line of scrimmage (left) via the densest vertical slice of∇Iy (right).

To separate teams and orient the play properly in the field, it’s important to detect
the line of scrimmage. Because players often cluster at the line of scrimmage,
the window with the highest total vertical gradient magnitude consistently offers
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a reliable result regardless of the team formations (Atmosukarto et al. 2013,
pp. 995).

3.2.2Player Identification

It’s next-to-impossible to automatically identify the starting locations of the
players without training a neural network. Even then, the training set would
need to be robust to the variations in jersey colors, poses, etc. Simple
convolution-based template matching (that is, identifying image patches that
match a template) can be used to “suggest” possible locations of players.
Unfortunately, due to high amounts of overlap between players at the line of
scrimmage and the mathematical naïvety of the method, the suggestions are still
imperfect (see Figure 5).

Figure 5. With a good initial choice (in blue here), it’s possible to have a majority of good
suggestions about player positions (in green) via rudimentary template matching. Obviously, it

does not work well enough to be a reliable auto-initialization method, as evidenced by the
handful of erroneous suggestions.

Because of that, the interface requires the users to specify starting positions for
all players (including a special identifier for the quarterback). This is the only
part of the processing pipeline that requires user interaction, and the line of
scrimmage can still be used to determine a player’s team.
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3.3 Player Tracking

A variety of methods were experimented with for tracking players: neither
template nor chromaticity-based particle filters could track players through rapid
camera movements despite their claims (Dearden et al. 2006). However, tracking
player centers-of-mass using sparse Lucas-Kanade optic flow proved to be far
more effective (Bougue 2001; Lucas and Kanade 1981; Roberts et al. 2007; Shi
and Tomasi 1994).

Specifically, at each frame, all of the current tracks (that is, points correlated
across > 2 frames) are considered. If a track is within a player bounding box,
it’s temporarily associated with that player; the track is ultimately associated with
the closer bounding box. Having multiple “candidate players” allows resolution
of overlapping bounding boxes when players are close together. The center of
mass of the player’s bounding box is then adjusted to be at the mean position
of its tracks.

After the entire video is tracked, the tracking paths are adjusted based on the
unwarped perspective transformation determined during Video Registration.

3.3.1 Smoothing

Due to the fact that not every track gets a positional update every frame, the path
may end up jittery do to non-linear fluctuations in the bounding box’s center
of mass. During simulation, such jitter is jarring, confusing, and impossible to
interact with realistically. Hence, a post-process of the path to smooth the results
is required.

An iterative method that minimizes a linear combination between each pair of
neighboring points works well (Kudrayvtsev 2019; Thrun 2014). Given a point on
the raw path, pi ∈ P, the resulting point on the smoothed path, si is balanced by
its distance from pi (i.e. the amount of drift) and its distance from its smoothed
neighbor(s), si±1:

min

α ‖pi − si‖

β ‖si − si+1‖

This can be solved iteratively via gradient descent until reaching some small
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Figure 6. A single player track is rendered in three forms: the raw
tracking data (in red), a 10th-degree polynomial approximation (in

green), and the iteratively-smoothed path (in yellow).

threshold (that is, until ∑i∆i 6 ε):

pi ∈ P : ∆i = α(pi − si) + β(si−1 + si+1 + 2si)
si = si + ∆i

Empirically, α = 0.1, β = 0.5, and ε = 0.1 work well. As evidenced in Figure 6,
this results in a path with little deviation from the raw data, yet a far smoother
trajectory and overall jitter-free experience from the user perspective. The green
trajectory was the result of an unsuccessful attempt to smooth paths by fitting
them to nth degree polynomials. Since polynomials are functions, they require
that there is only one y-value for every x; this is only true for paths that don’t
backtrack. The smoothing method falls apart in the general case since there’s no
guarantee of that property.

4RESULTS

All of the above information that is gleaned from the scene is serialized and
fed into a game engine for the virtual reality simulation. Art quality aside, the
reproduction of the footage is remarkably convincing, even with a prototype
implementation. Putting on the headset provides a whole new perspective on
the decisions the quarterback made: “objects in VR are closer than they appear.”
The scale of the game is completely different than when viewed from a camera
hundreds of yards away.
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Figure 7. Views from the within the simulation. Top: the defender (in blue) rapidly
approaches for a sack, moving much quicker than the video would suggest. Bottom: the player

makes a successful pass to an open player.

5CONCLUSIONS & FUTURE WORK

Volumes could be written on the potential for polish, expansion, and
improvement of the basic framework presented here. The main areas of focus,
however, can be categorized oriented around polishing tracking and art quality,
as well as around further leveraging the inherent potential of a simulation by
adding analytics and replay control.

5.1 Improvements: Polish

Tracking—As discussed at length in both the Video Registration and Player
Tracking sections, the quality of player tracking when the footage undergoes
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Figure 8. The first frame from a recording of a college football play (Georgia Tech vs. South
Florida) video and the relative first frame recreated in a 3D environment.

rapid perspective change (specifically, zooming) can be improved considerably.
The entire pipeline depends on finding accurate paths for players, hence any
investment in this area pays off exponentially.

Art—The simulation’s believability rests heavily on its ability to replicate the real
world. Without even considering the “uncanny valley,” in which a simulation
can be criticized for minutae when “trying too hard,” a baseline of “trying”
that is better than geometric primitives is a requirement for a player’s sense
of “presence” in the simulation (Mori et al. 2012; Schuemie et al. 2001). The
fidelity of interactions like throwing, ball collision, etc. is obviously directly
correlated with a simulation’s believability (McMahan et al. 2016; Warren 2018).
Discrimination between players will also go a long way, since a professional
will react differently depending on the class of player threatening his position
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(Hudson and Hurter 2016).

5.2 Improvements: Features

Rather than having coaching staff spend time and energy crafting the play, they
can now instead actively participate in the training process during the simulation.
The ability to pause and rewind player movements, highlight specific players or
actions, and view the play from any angle at any moment is an invaluable tool
for professionals.

Analytics—By bringing the play from world of turf to world of pixels, everything
can be enhanced with detailed analytics. From basic metrics like steps taken and
passes completed, to complex analyses like identifying problematic players or
strategies that lead to unsuccessful plays, the potential of digital analysis cannot
be understated. The world of sports is already dominated by analytics to help
maximize player potential and make micro-adjustments to their game; this adds
an entire dimension to that.

Controls—By mixing principles of virtual and augmented reality, players can
enhance their practice sessions with fine-grained control over the simulation.
Pausing to observe a play from another perspective grants untapped potential
for a player; much like how basketball players seeing their freethrow form can
lead to improvements (Covaci et al. 2012), seeing decisions or mistakes from an
outside view can lead to insights that are otherwise impossible to communicate.
Whether quickly cycling through scenarios or trying the same one over and
over, the immersive simulation grants the player unparalleled training efficiency
by letting them experiment without waiting on anyone. There are dozens more
potential improvements, but in summary, the fine-grain control over practice that
an in-hand controller provides simply cannot be matched outside of the headset.

Generally-speaking, the work presented here is not intended to be an end-to-end
training pipeline. Rather, it should be integrated or used alongside existing tools
so that coaching staff and athletes have the ability to create their own plays
or recreate existing ones; through integration, they can continue to leverage
the platform support, feature sets, and art assets of existing, well-developed
frameworks.
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5.3 Conclusion

There is no doubt that virtual reality is a viable platform for education and
training of both mental and physical skills; the literature supports the fact that
humans behave remarkably similarly when present in a simulation compared
to how they behave in real life. This, along with the scalability, flexibility, and
power innately offered by software, can be leveraged by athletes and amateurs
to practice more effectively.

The work presented here enables users of all technical and athletic skill levels to
go from watching a football play on TV to experiencing it in virtual reality
within minutes. The power and control that a simulation provides over a
tradition training setting, the lower barrier-to-entry from idea to execution, and
the potential to tap into a library of thousands of famous, unique, or challenging
plays with little effort can revolutionize the way a professional quarterback
approaches training.
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