

Machine Learning for Trading
or: An Unofficial Companion Guide to the Georgia

Institute of Technology’s CS 7646: Machine Learning for Trading

George Kudrayvtsev
george.k@gatech.edu

Last Updated: April 24, 2020

T his work is a culmination of hours of effort to create a lasting reference that fol-
lows along with Georgia Tech’s graduate course on machine learning algorithms
for trading. All of the explanations and algorithms are in my own words; the

majority of the content (and many of the images) are based on Dr. Tucker Balch’s
lectures for the course.

Much of this companion guide was powered by caffeine.
If you found it useful and are in a generous mood, feel
free to fuel my addiction: shoot me a donation on Venmo
@george_k_btw or Paypal kudrayvtsev@sbcglobal.net with
with whatever this guide was worth to you.

Happy studying!

1

mailto:george.k@gatech.edu
https://classroom.udacity.com/courses/ud501

Contents

I Manipulating Financial Data 5

1 Python for Finance 6
1.1 Global Statistics . 6

1.1.1 Bollinger Bands® . 7
1.1.2 Daily Returns . 7
1.1.3 Cumulative Returns . 9

1.2 Fixing Bad Data . 9
1.3 Graphing Financial Data . 10

1.3.1 Histograms . 10
1.3.2 Scatter Plots . 12

1.4 Portfolios . 14
1.5 Optimizers . 17

1.5.1 Using an Optimizer . 17
1.5.2 Building Parameterized Models 18
1.5.3 Portfolio Optimization . 20

II Computational Investing 21

2 Hedge Funds 22
2.1 Types of Managed Funds . 22
2.2 Compensation . 23
2.3 Attracting Investors . 25

2.3.1 Goals . 25
2.3.2 Metrics . 26

2.4 Hedge Fund Computing Architecture 26

3 The Order Book 28
3.1 Making Orders . 28

3.1.1 The Order Book . 29
3.1.2 Filling Orders . 32

2

3.1.3 Exploiting the Order Book . 34
3.1.4 Selling Short . 36

3.2 Exchange-Traded Options . 37
3.2.1 Options Chain . 37
3.2.2 Why Options? . 38
3.2.3 Properties of an Option . 39
3.2.4 Visualizing Options Strategies 40

4 Evaluating a Company 46
4.1 Metrics for Evaluation . 46

4.1.1 Intrinsic Value . 47
4.1.2 Book Value . 49
4.1.3 Market Capitalization . 49
4.1.4 Knowledge is Power . 49

4.2 Capital Asset Pricing Model . 50
4.2.1 Portfolio Management Under CAPM 51
4.2.2 CAPM for Portfolios . 52
4.2.3 Arbitrage Pricing Theory . 52
4.2.4 CAPM for Hedge Funds . 52

4.3 Technical Analysis . 55
4.3.1 Indicators . 55

4.4 Anomalous Price Changes . 59
4.4.1 Data Aggregation . 59
4.4.2 Stock Splits . 59
4.4.3 Dividends . 60

5 Beating the Market 62
5.1 The Efficient Markets Hypothesis . 62

5.1.1 Three Forms . 62
5.1.2 EMH Validity . 63

5.2 The Importance of Diversification . 64
5.2.1 Coin Flipping Casino . 65
5.2.2 Applying Grinold’s Law . 66

5.3 Portfolio Optimization . 68
5.3.1 Covariance . 69
5.3.2 Mean Variance Optimization 70
5.3.3 The Efficient Frontier . 71

III Learning Algorithms for Trading 72

6 Supervised Regression Learning 73
6.1 Regression . 74

6.1.1 Linear Regression . 75

3

6.1.2 k-Nearest Neighbor . 75
6.1.3 Training vs. Testing . 76
6.1.4 Problems with Regression . 77

6.2 Decision Trees . 77
6.2.1 Representing a Decision Tree 79
6.2.2 Learning a Decision Tree . 79

6.3 Evaluating a Learning Algorithm . 80
6.3.1 Metrics . 81
6.3.2 Overfitting . 82
6.3.3 Cross-Validation . 83

6.4 Ensemble Learners . 83
6.4.1 Bootstrap Aggregating . 84
6.4.2 Boosting . 85

7 Reinforcement Learning 86
7.1 Q-Learning . 88

7.1.1 Training a Q-Learner . 89
7.1.2 Trading as an MDP . 91
7.1.3 Dyna-Q . 92

Index of Terms 94

4

PART I
Manipulating Financial Data

Contents

1 Python for Finance 6
1.1 Global Statistics . 6
1.2 Fixing Bad Data . 9
1.3 Graphing Financial Data . 10
1.4 Portfolios . 14
1.5 Optimizers . 17

5

Python for Finance

P ython has emerged as a dominant language in financial analysis in recent years
due to its accessibility and the development powerful libraries such as pandas

and numpy which enable highly-optimized manipulation of stock market data.
Many of the statistics we’ll talk about here have some accompanying snippets that
describe how calculating that statistic would look in pandas. This is especially useful
for various projects in CS 7646 as there are many equally-correct ways to calculate
certain values, but a particular calculation is expected.

Snippet 1.1: A convenient way to compare price data for stocks is to normalize
them to all start at 1.0. This is trivial in pandas: just divide a dataframe by its
first price.

def normalize(df):
return df / df[0]

1.1 Global Statistics

Given a selection of stock market data, there are a number of global statistics we can
calculate that can give us insights to trends in a particular stock over time and allow
us to compare performance of various stocks in a portfolio.

These include things like the rolling mean, the rolling standard deviation, and
more.

Rolling Statistics in PANDAS

There are a number of functions in the pandas library that give us global
statistics. These aren’t members of the DataFrame class; rather, we pass
in a DataFrame and some additional parameters that specify a few details
about the computation we want.

• stats.moments.rolling_mean — notable parameters include the

6

https://pandas.pydata.org/pandas-docs/version/0.15.2/generated/pandas.stats.moments.rolling_mean.html

MACHINE LEARNING FOR TRADING

window size and the number of minimum necessary observations

1.1.1 Bollinger Bands®

Invented by John Bollinger in the 1980s, Bollinger bands are a measurement of a
stock’s volatility. By leveraging the rolling standard deviation—specifically, 2σ above
and below the global mean—we can get a sense of the volatility based on when the
current stock intersects the bands.

Figure 1.1: A visual demonstration of Bollinger bands® applied to $SPY. In this
particular example, buying at the dip and selling at the peak would’ve rendered
great profits, but there are plenty of examples in which this isn’t an effective
strategy.

A point of intersection, such as the dip in Figure 1.1, can indicate a trading opportu-
nity. A double intersection (as in, it dips through the lower band and back up through
it) with −2σ suggests a buy, whereas a double intersection with +2σ suggest a sell.
We won’t discuss the effectiveness of this method as an actual trading strategy until a
later chapter, but it’s an important demonstration of the power of these simple global
statistics.

1.1.2 Daily Returns

One of the most important statistics used in financial analysis is daily returns. It’s
very straightforward: how much did the price go up or down on a particular day?
The calculation is very simple: the daily return at time t is based on the price that
day divided by the prices on the previous day.

returnt =
pricet

pricet−1
− 1 (1.1)

Kudrayvtsev 7

CHAPTER 1: Python for Finance

Snippet 1.2: Given the portfolio value (either as a DataFrame, Series, or other
pandasdata structure) in port_val, we can find the daily returns (as a percentage)
rather easily by dividing the portfolio value by itself, offset by one day.

daily = (port_val[1:] / port_val[:-1].values) - 1

For example, if a stock was at $100 on Monday and $110 on Tuesday, the daily return
would simply be: 110/100 − 1 = 10%. We can plot the daily return for a stock over
time to get a sense of its growth trend; it will generally zig-zag around zero, though
its mean will be above zero if the stock price is increasing over time and below zero
otherwise.

Figure 1.2: A potential daily return graph for an arbitrary stock.

Daily returns aren’t very useful on their own relative to other global statistics like
the rolling mean. Instead, they shine when comparing stocks: we can compare the
daily returns of, for example, $AAPL1 against the S&P 500.

Figure 1.3: A comparison of the daily returns of Exxon Mobile ($XOM) to the
daily returns of the S&P 500 ($SPY). We can see that it matches the ups and
downs of the stock market in general quite closely.

1 Generally speaking, we use the notation $SYM to indicate a stock symbol.

Kudrayvtsev 8

MACHINE LEARNING FOR TRADING

1.1.3 Cumulative Returns

Another important statistic is cumulative returns. This is a measure of the stock
price over a large period of time starting from some t0. For example, you might say
that the S&P has grown 10% in 2012; that would be its cumulative return (for t0 =
January 1st 2012). The calculation is almost identical to (1.1), except it uses a fixed
initial time:

returnt =
pricet
pricet0

− 1 (1.2)

Figure 1.4: An example of calculating and subsequently charting cumulative
returns for $SPY in 2012.

Snippet 1.3: As usual, we assume an existing portfolio value calculation in
port_val. Note that the syntax .iloc[idx] is a way of directly accessing a par-
ticular row in a pandas DataFrame or Series object.

cumulative = (port_val.iloc[-1] / port_val_value.iloc[0]) - 1

1.2 Fixing Bad Data

We need to work around a number of (invalid) assumptions about financial data in
order to manipulate it successfully. Many people assume stock ticker data is perfectly
recorded minute-by-minute and has no gaps or missing data. The harsh reality is
that the data is actually an amalgamation from multiple sources. A particular stock
can trade at different (though similar) prices on different exchanges (like the NYSE
or the NASDAQ).

Naturally, data can also be missing. Low-volume stocks that don’t have a lot of
trading activity might not have any data for a particular day; similarly, stocks come
in and out of existence as the company (d)evolves.

Kudrayvtsev 9

CHAPTER 1: Python for Finance

The best way to work around gaps in a stock’s price data is to fill forward then fill
backward. To fill forward is to fill the price data from the last known price until
trading activity resumes. This is far better than interpolation because interpolation
is a “prediction” about the stock’s price in the future which is a big no-no when it
comes to analysis. After filling forward, there may still be an initial gap; for this, we
fill backwards.

Figure 1.5

Fixing Bad Data in PANDAS

The key to fixing bad data in pandas is DataFrame.fillna, typically called
with the parameter method=‘ffill’ (or ‘bfill’ for backwards filling).

1.3 Graphing Financial Data

We’ll be discussing histograms and scatter plots in this section, and we’ll start by
taking a closer look at daily returns.

1.3.1 Histograms

On their own, daily return graphs don’t offer us much. What we can do to get a
better insight on a stock’s behavior is to turn it into a histogram, which is essentially
a bar graph that relates values to the frequency of their occurrences. For example, if
there were 3 days in which you had 1% daily returns, you would have a 3-unit tall
bar for x = 1%. An important factor is choosing the granularity of the histogram
(i.e. how many “buckets” of values we want to track).

Kudrayvtsev 10

MACHINE LEARNING FOR TRADING

Figure 1.6: An example demonstrating how a daily return graph can be turned
into a discretized histogram.

Suppose we looked at $SPY over many years and created a
histogram, normalizing it to [−1, 1]. What would it look like?
Interestingly enough, it results in a normal distribution
(also called a Gaussian distribution).

With our neat little histogram, we can now compute interest-
ing values like the mean (in the case of a normal distribution,
this is its peak) and the standard deviation (which gives us
a sense of how often and how far things deviate from the mean). Another important
thing to note is the measure of kurtosis. Kurtosis shows us how much our histogram
would deviate from an actual perfect normal distribution.

Figure 1.7: A visualization of kurtosis. Tails of the histogram that don’t con-
form to the typical normal distribution (in the above example, the tails are too
fat) speak to the deviation of outliers relative to the norm.

This is especially notable at the tails of the distribution; we can see “fat tails” in the
histogram in Figure 1.7. This tells us there are frequently large outliers relative to a

Kudrayvtsev 11

CHAPTER 1: Python for Finance

perfect normal distribution, indicated by a positive kurtosis.

Kurtosis has real-world consequences. If we assume that our models are perfect
normal distributions, we mathematically disregard inconsistencies in the data. This
is a big mistake that is amplified with the amount of outliers actually present in
the data. Kurtosis contributed to the Great Recession of 2008: banks built bonds
based on mortgages whose returns they assumed were normally distributed. Thus,
they claimed that the bonds had a very low probability of default. This proved to be
false as massive numbers of homeowners defaulted on their loans, precipitating the
economic collapse.

Comparing the histograms of stocks is an important part of financial analysis. For
example, consider the two histograms for $SPY and $XYZ:

We can see that $XYZ has a lower return and a higher volatility than $SPY: its mean
is lower and the standard deviation is larger. There is a higher spread of data, so
there is more variation in daily returns, which is the definition of volatility.

1.3.2 Scatter Plots

A scatter plot lets us visualize differences between stocks at particular points in time
by plotting them against each other. For example, in Figure 1.8 we can see the darkly
circled area, which corresponds to both $SPY and $XYZ having a positive daily return,
but $XYZ’s is higher.

Given enough data, we can typically see a trend. In Figure 1.8, we can see that there
appears to be a linear relationship, however its quite loose as the dots are relatively
spread apart. We can use linear regression2 to fit a line to the plot. The slope of
that line—referred to in the financial world as β when comparing to a general market-
tracking stock like $SPY—describes how the stock reacts to the market. If β = 1, it
means that when the market goes up 1%, that stock will also go up 1%.

Notice that the line of best fit in Figure 1.9 is above the origin. This value (the y-
intercept of the line) known as α describes how much better a stock performs relative

2 We won’t cover linear regression for now. It should be a familiar concept, but if not, you can think
of it as the mathematical way to find the “line of best fit” for some points.

Kudrayvtsev 12

MACHINE LEARNING FOR TRADING

Figure 1.8: Turning the daily return plots of two stocks into a scatter plot.

Figure 1.9: The slope of a line indicates a relationship
between market trends and a specific stock (when comparing
to $SPY).

to the market on average. In this case, $XYZ often outperforms the market slightly.

Another important metric on the scatter plot is correlation. This is a measure of
how tight the points are to the line of best fit, in the range [0, 1]. In Figure 1.9, the
dots are typically fairly far from the line,3 which means there is a low correlation. It’s
critical to keep in mind that slope 6= correlation: it’s just a measure of how tightly
the dots fit a line of a particular slope.

Understanding Check: Correlation vs. Slope

Below are scatter plots for two stocks in relation to the S&P 500: $ABC
and $XYZ. Which of the following is true about $ABC?

(a) $ABC has a higher β (slope) and a lower correlation.

3 Mathematically speaking, this would be a measure of the total error using something like the
distance.

Kudrayvtsev 13

CHAPTER 1: Python for Finance

(b) $ABC has a lower β and a higher correlation.

(c) $ABC has a higher β and a higher correlation.

Answer:(c)

1.4 Portfolios

Let’s expand beyond the realm of single-stock-analysis. We’ll start out with a “buy-
and-hold” strategy for our portfolio in which we have some initial principal invest-
ment spread out over a number of stocks; we will observe its behavior and performance
over time. A portfolio is just a weighted set of assets. For example, your portfolio
might be composed of $AAPL, $GOOG, and $AMZN; the weight of each asset is the
portion of total funds allocated to it.

Suppose our portfolio has the following setup:

• Principal starting value: $1,000,000 (I wish. . .)

Kudrayvtsev 14

MACHINE LEARNING FOR TRADING

• Investment period: Jan. 1st 2009 to Dec. 31st 2011

• Stocks: $SPY, $XOM, $GOOG, $GLD

• Allocation ratios: [0.4, 0.4, 0.1, 0.1]

To calculate our daily portfolio value, we can use the following formula (assuming an
initial data frame prices which has daily prices for our stocks):

portfolio =
∑

ratio ∗ start︸ ︷︷ ︸
per-stock principal

∗ prices

prices[0]︸ ︷︷ ︸
normalized prices︸ ︷︷ ︸

daily position

(1.3)

Let’s assume now we have a data frame port_val which is the list of portfolio values
over time and the data frame daily_rets which is its daily returns. We can now cal-
culate some statistics that everyone wants to know about a portfolio: the cumulative
and average daily return, the standard deviation of the daily return, and the Sharpe
ratio.

The cumulative return is simply the percentage of total portfolio growth, so its final
value minus the initial value. The next two we have already discussed. The Sharpe
ratio gives us an insight about our returns in the context of risk. Finance folk often
associate risk with the standard deviation as that represents a stock’s volatility (hence
why cryptocurrency investment is risky: your coin could be worth $100 tomorrow or
$1000 or $3).

Snippet 1.4: In this snippet, we assume the existence of a DataFrame of stock
data called prices that’s formed as we’ve discussed: each row is labeled by a date
and each column corresponds to a $SYMBOL. We’ll also assume that allocs is
our ratio of allocations and that principal is our initial (total) investment.

normalized = prices / prices.iloc[0] # normalized prices
allocated = normalized_prices * allocs # prices scaled by allocation

ratio
positions = allocated * principal # per-stock investment
portfolio = positions.sum(axis=1) # portfolio value every day

Naturally, given two stocks with similar returns, we’d choose the one with less volatil-
ity; similarly, given similar volatility, we’d choose higher returns. What about a stock
that is more volatile but has higher returns than another? This typically involves a
bit of a “gut feeling,” but we want to do better than that.

That’s where the Sharpe ratio comes in: it gives us a risk-adjusted return. All
else being equal, it considers low levels of risk and high returns to be good. The
Sharpe ratio additionally considers the risk-free rate of return which is critical when
comparing financial strategies. A risk-free investment is something like an FDIC-

Kudrayvtsev 15

CHAPTER 1: Python for Finance

insured bank account or a short-term treasury, which are (more-or-less) guaranteed
to grow at a particular percentage. If your investment strategy doesn’t outperform a
risk-free return rate, you might want to reconsider it.

Given the portfolio return Rp, the risk-free return rate Rf , and the standard deviation
of Rp (i.e. the volatility or risk), we can formulate the Sharpe ratio as such:

Rp −Rf

σp

Notice that as volatility goes up, the ratio shrinks. Similarly, as the return goes
up (sans the risk-free return), the ratio grows. The actual formula is a little more
complicated, but describes the same pattern (here E is the expectation):

S =
E[Rp −Rf]

std[Rp −Rf]
(1.4)

The “risk-free rate” can be taken from LIBOR, the 3-month treasury bill, or just set as
0% which has been an accurate approximation lately. Instead of having to constantly
check and update the aforementioned values every day, we can approximate the daily
risk-free rate by taking the 252th root of the annual rate (remember, there are 252
trading days in a year): Rf = 252

√
1.0 +Rfannual − 1.

The Sharpe ratio can vary wildly depending on how frequently its sampled. It was
originally envisioned as an annual measure. If we want to sample more frequently,
we need to add an adjustment factor k to make it all work out, where k is the square
root of the number of samples per year. For an Rp that represents daily portfolio
returns, then, k =

√
252. Similarly, k =

√
52 for weekly samples, etc.

Example 1.1: Sharpe ratio

Suppose we’ve had our portfolio for 60 trading days. Our average daily
return is 1/10% per day (0.001%, or 10 basis pointsa). Our daily risk-free
return is 2 basis points, and our volatility (σ) is 10 basis points.

What’s the Sharpe ratio of this strategy?

Since we are operating in days, we know k =
√
252. Then, we just use (1.4)

directly:

S =
√
252 · 10− 2

10
= 12.7

a Basis points are often called “bips,” and their unit is bps.

Kudrayvtsev 16

MACHINE LEARNING FOR TRADING

1.5 Optimizers

Optimization problems are a class of mathematical problems that require us to
solve for a value or values that maximize (or minimize) an equation. In this section,
we’ll be discussing optimizers in code that can solve these types of problems in a
financial context.

An optimizer can:

• find the minimum values of a function,

• build parameterized models from data, and

• refine stock allocations in a portfolio

Using a pre-built optimizer is fairly simple. All we need to do is provide a function
to minimize (such as f(x) = x2 + 5) and an initial guess.

1.5.1 Using an Optimizer

Let’s walk through a simple minimzation example. Suppose we’re given the function
(plotted below):

f(x) = (x− 1.5)2 + 0.5

How does the minimizer work? Suppose our initial guess was x = 2. At that value,
it uses the neighbors (like x = 1.9 and x = 2.1) to approximate a local slope and
“marches downhill” (this is gradient descent). It repeats the process with another
value that is down this slope, eventually converging to the minimum value x = 1.5.

0 1 2 3

0.5

1

1.5

2

Gradient descent is just one of a myriad of ways to minimize a function; it’s an easy
configurable parameter to scipy.optimize.minimize.

Kudrayvtsev 17

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

CHAPTER 1: Python for Finance

Unfortunately, this isn’t a bulletproof method. Functions with many local minima
and flat areas are tough for minimizers to solve. Specifically, convex functions are
the easiest for optimizers to solve. Formally-speaking, a convex function is one in
which you can draw a line segment between any two points and that line would not
intersect the function. A convex function must have just one minimum and not have
any problematic flat areas.

1.5.2 Building Parameterized Models

Our goal in this section is to build a parameterized model from data.

Those of you who have taken a course on computer vision may have covered a similar
topic: instead of treating a line as an equation y = mx + b in which m and b are
known, and we can plug in arbitrary x values to get their corresponding ys, we instead
already have a set of {(x0, y0), (x1, y1), . . .} data points and wish to solve for m and
b.

For convenience and generalization in code, we’ll use ci to refer to our parameters, so
c1 = m and c2 = b in our aforementioned parameterized model of a line.

Error Metrics

If the data fit our model perfectly, solving the parameters would be trivial. It’s
unlikely, though, that all of our points would be perfectly colinear, for example.
Thus, we need a way to evaluate the quality of a “candidate model.”

0 1 2 3
0

1

2

3

e0
e1

e2

x

y

Figure 1.10: Fitting a line to a set of
points, with the errors in red.

Given our understanding of minimizers, we
want to reframe the “model of best fit” prob-
lem into something a minimizer can process.
A common go-to error metric is simply the
total vertical error from the points to the
line.

Our error function in this case is the vertical
distance between point (xi, yi) and the line,
for all points. mxi+ b is the “real y” at that
x value via the true equation of the line:

E =
n∑
i=1

(yi − (mxi + b))2

We can feed the minimizer the above error function applied to our simple line function:
f(x) = c1x+ c2, resulting in the parameters that best fit our data.

This error function isn’t perfect: it over-emphasizes the error of steep lines because it
only considers the y component, as seen in Figure 1.11. A better function would be

Kudrayvtsev 18

https://georgek.dev/assets/cv-notes.pdf#chapter.4
https://georgek.dev/assets/cv-notes.pdf#chapter.4

MACHINE LEARNING FOR TRADING

e0 x

y

Figure 1.11: Measuring vertical error over-
emphasizes errors in steep lines, but don’t let that
distract you from the fact that the Warriors blew
a 3-1 lead in the 2016 Finals.

distance, or perpendicular error, but we won’t get into that here because apparently
it’s too advanced of a topic for a graduate-level course on financial algorithms.

Snippet 1.5: We can find the best-fitting model to a set of observed data
by feeding the model function into SciPy’s optimization toolkit, specifically
scipy.optimize.minimize.

import numpy as np

def error_function(line, data):
""" Computes the error between a line (m, b) and observed data.

line: a 2-tuple (c0, c1) where c0 is the slope and c1 is the y-
intercept

data: a 2D array where each row is an (x, y) point
"""
return np.sum((data[:, 1] - (line[0] * data[:, 0] + line[1])) ** 2)

n Dimensions

This process is extensible to n-dimensional data fairly simply. It does rely on the key
assumption that the function can be modeled as an nth-degree polynomial. That’s
okay for our current purposes, though, because we’ll be applying this technique to
optimize a portfolio which can be viewed as a simple function of allocation ratios
applied to prices.

Snippet 1.6: We can find the best-fitting polynomial function to a set of ob-
served data much like in Snippet 1.5.

import numpy as np

def error_function(C, data):
""" Computes the error between a line (m, b) and observed data.

C: np.poly1d object (or 1D array) representing polynomial
coefficients

Kudrayvtsev 19

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

CHAPTER 1: Python for Finance

data: 2D array where each row is an (x, y) point
"""
return np.sum((data[:, 1] - np.polyval(C, data[:, 0] + line[1])) ** 2)

1.5.3 Portfolio Optimization

Given a set of funds (i.e. stock symbols), assets (i.e. an initial amount of money
to invest), and a time period (e.g. 1 year), find the ratio of assets to funds that
maximizes performance. “Performance” here is the variable that depends on your
investment strategy. If all you care about is growth, for example, you’d want to
maximize cumulative returns (see Snippet 1.3).

In our running example, we’ll optimize the portfolio’s Sharpe ratio instead. The set of
variables we wish to optimize is the allocation ratios across our chosen stock symbols.
For example, we might want 20% of our funds to $AAPL, 10% to $GLD, and the rest
to $XOM for a nice, diversified portfolio. Of course, this might not be the optimal
ratio. Framing this problem is a straightforward process:

• Provide a function for minimize() to work with.

We’re trying to find the optimal allocations across a fixed set of stocks. Thus, in
this function we’d need to calculate the Sharpe ratio for a given “best allocation”
guess. Because we’re using a minimizer, though, we need to multiply our result
by -1.

• Provide an initial guess for our allocation ratios.

For this parameter, many values are likely to result in the same resulting optimal
ratio. It might make sense to pick your true best guess, your ideal resulting ratio,
or just a uniform distribution (like 33% across our above 3 stocks).

• Set up our ranges and constraints.

Obviously, we don’t want to try any input values that result in allocations
beyond 100% of our funds. In other words, our constraint must require that
the sum of the ratios is 1. Similarly, we can restrict the possible inputs to our
function to fall in [0, 1].

• Call the optimizer. (I don’t think this bears more explanation.)

Kudrayvtsev 20

PART II
Computational Investing

Contents

2 Hedge Funds 22
2.1 Types of Managed Funds . 22
2.2 Compensation . 23
2.3 Attracting Investors . 25
2.4 Hedge Fund Computing Architecture 26

3 The Order Book 28
3.1 Making Orders . 28
3.2 Exchange-Traded Options . 37

4 Evaluating a Company 46
4.1 Metrics for Evaluation . 46
4.2 Capital Asset Pricing Model . 50
4.3 Technical Analysis . 55
4.4 Anomalous Price Changes . 59

5 Beating the Market 62
5.1 The Efficient Markets Hypothesis . 62
5.2 The Importance of Diversification . 64
5.3 Portfolio Optimization . 68

21

Hedge Funds

I n this part of the course, we’ll open up by discussing the different types of hedge
funds. Following that, we’ll look at how the market works, then talk about eval-
uating a company’s worth and how that can be reflected in its stock price.

Let’s cover a few vocabulary words here before we dive into details.

• Liquidity is a measurement of how easy it is to buy or sell shares in a fund.

As we’ll see soon, ETFs, or exchange-traded funds are the most liquid of funds.
They can be bought and sold easily and near-instantly during the trading day
just like individual stocks; ETFs, though, represent some distribution of stocks.
The volume of an ETF is just as important to its liquidity: because there are
often millions of people trading it, it’s easy to get your buy / sell order filled.

• A large-cap stock like Apple refers to a stock with a large market capital-
ization.

Market cap is a metric of a stock’s total shares times its price. It’s worth noting
that the price of a stock has no relation to the value of a company; it only
describes the cost of owning a single share in that company.

If you can afford the market cap of a company, you can afford to buy the
company in its entirety and take over its ownership.

• A bull market or a bullish position on a stock is an optimistic viewpoint that
implies that things will continue to grow. On the other hand, a bear market
or a bearish position is pessimistic (or cautionary, or realistic, depending on
how you see the glass) about the future of an asset.

2.1 Types of Managed Funds

With that in mind, managed funds can be broken down into three categories:

ETFs These funds function almost identically to stocks. Though they represent
buckets of various ratios of stocks rather than shares in a single company, they

22

MACHINE LEARNING FOR TRADING

can still be bought and sold just like regular stocks during the trading day. They
are (usually) very liquid, especially if they have a high market capitalization.
They often track either an entire market (like $SPY is an ETF tracking the
S&P 500) or a specific sector. Furthermore, they’re completely transparent:
their structure, strategy, and distribution of allocations is publicly available.

For example, $SMH, the VanEck Vectors semiconductor ETF, tracks various
semiconductor producers. Their holdings are publicly available (with their high-
est allocation ratio falling onto Intel $INTC at 12.3%) and are tradeable via most
brokers and trading platforms.

Mutual Funds These funds are typically less transparent and less liquid than ETFs.
Their allocations are disclosed quarterly, and they can only be traded at the
end of a trading day. In line with that, their strategies are often much less
transparent as well. Often, you have to sign an NDA or some other “hush-hush”
agreement to buy shares in a mutual fund; generally-speaking, there’s a much
higher barrier to entry relative to an ETF.

Hedge Funds These funds, the biggest kahuna of them all, are highly secretive
about their strategy and don’t have to disclose their allocations or plans at
all. They entice people to invest in them by demonstrating results—if they can
show you a 30% gain in value over the last quarter, do you really care what
their strategy is? Yeah, me neither.

Of course, there is evidence that hedge funds generally don’t outperform mutual
funds, but that’s beside the point here.

Table 2.1 summarizes the three categories. Now besides the difference in liquidity,
composition, and transparency, why would you want to be the fund manager of one
of these or another? Let’s talk about the only thing that matters—compensation.

ETFs Mutual Funds Hedge Funds
Bought/sold like stocks Bought/sold end of day Bought/sold by agreement

Are backed by “baskets” of stocks Disclosed quarterly No disclosure
Transparent and liquid Less transparent Not transparent

Table 2.1: A brief summarization of the differences between
the three types of managed funds.

2.2 Compensation

Let’s discuss how the managers of each of these funds is compensated for their hard
work of deciding how to spend other people’s money. First let’s introduce the idea of
assets under management or AUM, which is the amount of other people’s money

Kudrayvtsev 23

https://www.vaneck.com/etf/equity/smh/holdings/?defaultaudience=default
https://www.cnbc.com/2017/08/09/buffett-challenge-hedge-funds-vs-index-funds-9-years-on.html
https://www.cnbc.com/2017/08/09/buffett-challenge-hedge-funds-vs-index-funds-9-years-on.html

CHAPTER 2: Hedge Funds

the fund manager is responsible for.

In ETFs, managers are compensated by an expense ratio which is often simply a
percentage of the AUM. They’re generally pretty low: anything from 0.01% (1 “bip”)
to 1% is typical (though the higher end is more unusual).

In mutual funds, the managers are also compensated by an expense ratio, though it’s
much higher than that of an ETF. They typically range from about 0.5% to 3%. If
you ask a mutual fund manager why they get compensated more, they’re tell you it’s
because their job requires more skill than an ETF’s manager. An ETF is typically
designed to track an index; the manager of $SPY, for example, just needs to make
sure s/he allocates the stocks in the S&P 500 as they are represented. Because a
mutual fund has more discretion about the ratios in its portfolio, it can incorporate
research, deeper insights, etc. into its strategy to get better returns than an index.

Hedge funds follow an “old school” model known as two and twenty: they get 2%
of the AUM as well as 20% of the profits. Now that’s quite a big chunk of the profits;
however, if you’re an investor and you’re making more money than you would be at
a mutual fund (even after the manager’s cut), why do you care?

Example 2.1: A Hedge Fund Manager’s Salary

Imagine you’re a hedge fund manager managing 100 million dollars. Why
are you taking this class again? Oh right, we’re just imagining. . . Okay, so
suppose you had a 15% return this year. How much would you be compen-
sated?

Well, the “two”—two percent of the AUM—comes out to $100m × 0.02 =
$2m, plus another “twenty”—twenty percent of the profits–or $15m×0.20 =
$3m, meaning you made $5m this year.

Now stop imagining and snap back to cold reality.

A common follow-up to this might be, “Is the ‘two’ calculated on the initial
principal of $100m or the end fund balance of $115m?” Naturally, this
depends on the hedge fund’s compensation policy. In reality it’ll probably
be somewhere between the two as they take snapshots of the value of the
fund throughout the year.

Modern-day hedge funds typically don’t offer this classic 2/20 rate anymore. More
common is things like 1/10 or somewhere inbetween, but the split compensation
structure usually remains the same.

With the compensation model in mind, what motivates each respective fund man-
ager? Well with just AUM factoring into the expense ratio, increasing that number
is basically the only motivation for managers of expense-ratio-compensated funds—

Kudrayvtsev 24

MACHINE LEARNING FOR TRADING

ETFs and mutual funds. Hedge funds, on the other hand, are additionally-motivated
by profit, and so are consequently also motivated by risk-taking strategies.

Let’s move forward assuming we want to be hedge fund managers since it seems like
the most glamorous option and look deeper into what that entails.

2.3 Attracting Investors

A hedge fund with no investors is meaningless. How can we make money without
risking someone else’s? Invest our own? Unbelievable. So let’s talk about how we
can con attract some people to give us their money to invest.

For whatever reason, hedge funds typically don’t have more than 100 investors. As a
result, they generally want each one to offer them a fairly large principal investment.
So who are they targeting? Investors can be broken down into three categories: (very
wealthy) individuals, (very large) institutions, and funds of funds.

Now why would anyone trust someone like you with their wealth? At the very least,
you need to offer them a track record of success in the past, a convincing simulation
and story for your investment strategy, and a portfolio fit that aligns with their
investment goals. If you want to go all-in on the technology startup sector whereas
Georgia Tech’s foundation needs a stable place to keep their money, it might not be
a good fit.

In addition to strategy, variety might be important to keep in mind. Diversity is key
in a good portfolio that can endure market dips and general volatility. If an investor
already has a particular area covered (like small-cap growth stocks, for instance), if
you can only offer them a similar sector, things might not work out.

2.3.1 Goals

Obvious your goal as a hedge fund manager is to make money. Things can be a little
more nuanced than that, though. Some common goals that are helpful in attracting
investors include:

• Beating a benchmark: if our portfolio can consistently beat the S&P 500
by choosing the best-performing stocks of the bunch, that can be a good and
convincing benchmark.

• Absolute return: no matter what happens, we want a way to ensure a positive
return overall. This is typically accomplished by “going long” (investing long-
term) on good stocks and “selling short” (betting on declines on bad stocks in
the short-term) on bad stocks. We’ll discuss shorting later.

Your choice of goal as a hedge fund manager should depend on your experience and
expertise. For example, if you’re really good at picking stocks in emerging markets

Kudrayvtsev 25

CHAPTER 2: Hedge Funds

overseas, your best bet is targeting beating an index that tracks a similar investment
strategy.

2.3.2 Metrics

Given these goals, how can we measure our fund to see if our portfolio meets them?
Well we already discussed quite a few metrics in the previous minicourse. Cumulative
returns, volatility, and a measurement of the risk / reward (like the Sharpe ratio) are
all reliable and convincing metrics.

2.4 Hedge Fund Computing Architecture

Hedge funds and high-frequency trading firms are some of the most computationally-
demanding environments out there. There is a massive interconnected infrastructure
that connects real-time market data, massive databases of historical pricing data,
and state-of-the-art machine learning models to create trading algorithms. Figure 2.1
maps out a (very) high-level architecture for a typical firm.

Figure 2.1: The architectural structure of a hedge fund.

The current prices constitute a real portfolio. The trading algorithm uses that as well
as real-time data about the market (pending orders, etc. which we’ll get to shortly) to
send out orders that make progress towards matching the target portfolio. There are
complexities in this “progress-making” process: if your target portfolio wants 10,000
shares of $AAPL, buying those 10,000 shares outright would be detrimental to our
portfolio and probably make us change our target portfolio midway. This is because
buying such a large quantity of shares will make the price rise as the market price
goes up to meet demand. Hence there is a financial benefit to incrementally reaching
the target portfolio with minimal market effecets.

Kudrayvtsev 26

MACHINE LEARNING FOR TRADING

We’ll work through this architecture backwards, starting from the market itself and
eventually getting into the nitty-gritty inner workings of a machine learning model
applied to market data.

Kudrayvtsev 27

The Order Book

W hat happens when you click “buy” on a share of stock through an online
broker?1 Probably a lot more than you might imagine. Let’s dive into the
details and discuss orders and the order book.

3.1 Making Orders

An order is a well-defined structure that contains very specific instructions about
the stock to buy. It is made up of:

• Action: this is either a BUY or SELL instruction.

• Symbol: this is the unique stock symbol (like $AAPL or $SPY) to execute the
order on.

• Quantity: this is the number of shares to purchase.

• Order Type: this is either a market or limit order. There are significant
differences between these two order types.

A market order does not specify a price for the order. It generally indicates
that you are willing to accept a “good price” for a stock. In reality, though, it’s
filled at whatever price someone is willing to accept the order.2 This can vary
wildly during volatile market times. For example, if $TSLA stock is plummeting
because of Elon’s latest Twitter rant, your market sell order might get filled at
far below the “current” price you saw in your broker’s stock ticker.

A limit order, on the other hand, does specify a price for the order. It guarantees

1 By the way, if this course has motivated you to start investing, RobinHood is a great way to get
started. It has no trading fees (!) and is extremely mobile-friendly. If you use my invite link, we’ll
each get a free stock! https://share.robinhood.com/georgek84

2 This is typically where high-frequency trading firms will take advantage of their literal physical
proximity to the exchanges’ order books to fill market orders for slightly more than the current price
and make a few pennies in profit. Well, a few pennies per share for a few million or billion orders
a day. . . Check out Is the stock market rigged? for details on this surprisingly-legal phenomenon.

28

https://share.robinhood.com/georgek84
https://www.youtube.com/watch?v=ibQmtYrTEDQ

MACHINE LEARNING FOR TRADING

that when the order is executed, it will be executed at that price. For buy
orders, it can also be filled below that price; similarly, for sell orders, it can be
filled above your specified sale price. The outcome is guaranteed to be what
you specify or better, however, it’s entirely possible that your order will not be
filled in the reasonable time frame you expect. During the same aforementioned
period of volatility, if you ask for price x on your stock, but the market has fallen
far below that point, it may take months or years for the share price to recover
to x and thus for your order to be filled.

• Price: for limit orders, this specifies the precise minimum value you’re willing
to pay or receive for your order.

Let’s take a look at how a typical market order will be filled.

Fun Fact: Other Order Types

Your online broker may offer you some other order types such as stop loss
or stop limit. These are actually not directly supported by the market
but are special orders that your broker automatically converts to one of the
above types when the condition is fulfilled.

For example, a stop-loss sell order specifies that once a stock drops below
a particular user-defined price, it should be executed as a market sell. It is
generally used to, as the name suggests, stop losses as a stock drops in value.
You might, for example, never want to risk losing money on an investment,
so you could set a stop-loss order to be at (or slightly below) the price you
purchased the stock at; your broker would convert and execute the sale any
(!) time the stock dipped that low.

The most impactful and well-known of these is the ability to sell short,
which we’ll discuss in further detail soon.

3.1.1 The Order Book

Let’s suppose we executed the following order on the exchange, “Buy 100 shares of
$IBM at a limit price of $99.95”:

BUY, IBM, 100, LIMIT, 99.95

Suppose this is actually the first order of the day. This action adds a BID entry to
the public order book for the exchange:

Type Price Quantity
BID 99.95 100

The order itself is anonymized, but it becomes public knowledge that there is interest
in 100 shares of $IBM. It’s important to note that identical orders are lumped together.

Kudrayvtsev 29

CHAPTER 3: The Order Book

If another person comes along asking for another 200 shares at that same price, the
order book would look like this:

Type Price Quantity
BID 99.95 300

NOT like this:

Type Price Quantity
BID 99.95 200
BID 99.95 100

Only your broker maintains the relationship between identities and orders in the
exchange’s order book.

Let’s see what happens when a sale, or ASK, entry comes in. Suppose you submit an
order to buy 1000 shares of $IBM with a limit price of $99.95. There’s nobody selling
$IBM at that price, so it just gets added to the order book.

Type Price Quantity
ASK 100.00 200
BID 99.95 1000

Suppose that after some time, the order book looks like this:

Type Price Quantity
ASK 100.10 100
ASK 100.05 500
ASK 100.00 1000
BID 99.95 1000
BID 99.90 50
BID 99.85 50

Then a market order arrives to buy 100 shares of $IBM. Remember, market orders
don’t specify a price, so they can always be filled (well, provided that there are sellers).
The order is filled by the cheapest “ask” order, resulting in the client getting their
shares for $100 each.

Type Price Quantity
ASK 100.10 100
ASK 100.05 500
ASK 100.00 1000 900
BID 99.95 1000
BID 99.90 50
BID 99.85 50

The gap in price between the asks and bids is called the bid-ask spread, representing
the supply and demand for the asset. The “current value” of a stock is somewhere in
this spread.

Kudrayvtsev 30

MACHINE LEARNING FOR TRADING

Example 3.1: How Does the Spread Reflect Stock Value?

Now that you know how an order book works, let’s consider how we can
use information about it to learn about the state of the market. Given the
following order book, do you think the price of the stock is going to go up
or down?

Type Price Quantity
ASK 100.10 100
ASK 100.05 500
ASK 100.00 1000
BID 99.95 100
BID 99.90 50
BID 99.85 50

The stock is much more likely to go down in price because of the selling
pressure. Consider the difference between someone placing a market-buy
vs. a market-sell order for 500 shares. For the buy, you would immediately
get rid of all of the bids in the order book, meaning the price goes down.
On the other hand, for the sell, the price wouldn’t budge at all; you would
only get rid of 500 shares in the cheapest ask.

Let’s walk through the changes that occur to the order book through a handful of
order examples. We will start with the order book from the previous example.

Type Price Quantity
ASK 100.10 100
ASK 100.05 500
ASK 100.00 1000
BID 99.95 100
BID 99.90 50
BID 99.85 50

The following orders come in (oldest first):

BUY, 100, Market
BUY, 100, Limit, 100.02
SELL, 175, Market

The resulting order book is as follows:

Kudrayvtsev 31

CHAPTER 3: The Order Book

Type Price Quantity
ASK 100.10 100
ASK 100.05 500
ASK 100.00 800
BID 99.85 25

Do you follow the flow? The first order is filled by the cheapest ask, dropping its quan-
tity to 900. Then, the second order is likewise filled by the cheapest ask—remember,
a limit-sell guarantees the specified price or better—dropping it to 800. Finally, the
third order fills out the first bid completely, then the second bid completely, and even
25 shares in the third bid. All together, the client would probably have their market
purchase “cost” be the average across the three orders it used:

cost =
(99.95× 100) + (99.90× 50) + (99.85× 25)

175
≈ 99.92

We can concretely see why the stock was more likely to decrease in price prior to this
transaction, as explained in the previous example. At the end of these orders, the
price is somewhere between $100 and $99.85 rather than between $100 and $99.95 as
it was previously.

Figure 3.1: The order book of a real stock using a real trading platform.

3.1.2 Filling Orders

The path your order takes varies wildly depending on a number of factors. There is
always an intermediary between you and a filled order: your broker. Your broker is
connected to a number of exchanges (like the NASDAQ or NYSE). Certain stocks

Kudrayvtsev 32

MACHINE LEARNING FOR TRADING

might be listed at one or more exchanges. Your broker has devices at each exchange
that query the order book and report back results to the broker’s “home base” where
it gathers and analyses that data to give you the best price. It executes your order
on the best exchange and gives you a confirmation.

This is the simplest, clearest scenario. What if there are multiple clients using the
same broker to make orders, and you want to buy the same stock that Joe Shmoe is
selling? The trade can be made within the broker without having to contact (or pay
fees to) the exchanges for their order information.3

Can we extrapolate this scenario across brokers? Turns out there’s an entity out there
called the dark pool, which is an intermediary between brokerages and exchanges.
The dark pool often makes predictions about price movement; they pay the brokerages

3 By law, the broker must give you a price as good as you would get on the exchange.

Kudrayvtsev 33

CHAPTER 3: The Order Book

for the privilege of seeing orders before they’re executed, and will actually execute
advantageous ones without involving exchanges. Both of these entities—the broker-
ages and the dark pool members—claim this is kosher, legally-speaking, because they
are still guaranteeing at least as good of a price as is available on the exchanges
themselves.4 Apparently around 80-90% of the trades made by “retail traders” never
actually make it to the exchanges.

3.1.3 Exploiting the Order Book

There are far more avenues for exploitation and (legal) skimming available than the
simplistic happenings between the dark pool and brokerages we talked about in Filling
Orders. Let’s talk about how hedge funds can exploit inefficiencies in this system.

Exploit 1: Faster-Than-Light Travel

We’re located in Seattle and use e-Trade as our broker. That means our view of the
order book, as well as any orders we make, are out-of-date by the amount of time it
takes for that information to get to (or from) us. If we traveled at the speed of light,
this would be almost 13ms one way, but since we have to deal with traveling through
thousands of routers, switches, NSA taps, etc. through inefficient copper or even fiber
optic cables, it’s more like 76ms on average.[1, 2]

Hedge funds exploit their geographical advantage by having a device at the exchange
itself, giving them instant access to order book changes.

With this massive advantage in reaction time, the hedge fund can make predictions
about the price of a stock and place orders ahead of your prediction. For example,

4 Of course, by pooling together orders they get a better view of the market as a whole than the
exchanges or any independent trader ever would, but I guess they bribe lobby the government
enough to turn a blind eye to that competitive, monopolistic advantage.

Kudrayvtsev 34

https://www.wolframalpha.com/input/?i=distance+from+seattle+to+new+york+divided+by+the+speed+of+light
https://wondernetwork.com/pings/New%20York

MACHINE LEARNING FOR TRADING

Figure 3.2: Demonstrating the geographical advantage that hedge funds have.
Your actions take at least 12ms to reach the market as they travel from Seattle
to New York (even ignoring the pit stop at your broker in Atlanta), but the
machine(s) that hedge funds have co-located on the exchange can beat you to
any action every time, making a small profit every few milliseconds.

it might buy the stock as you’re buying it, then sell it to you (12ms later) for a few
pennies more.

Exploit 2: Geographic Arbitrage

Suppose there is a stock listen in two exchanges: the NYSE and the London Stock Ex-
change. They operate independently, so there may occasionally be a small difference
in the price of a stock from one exchange to another. A hedge fund can have servers
at both exchanges wired with an ultra-high-speed, dedicated connection. When any
of these differences arise (such as NYSE’s price going below London’s), it immediately
buys shares on the NYSE exchange and sells shares on the London exchange (either
the same existing ones, depending on whether or not it already owns some).

Figure 3.3: Demonstrating geographic arbitrage. A hedge fund uses its dedi-
cated connection to take advantage of price differences between exchanges.

Because this process occurs and is well-understood, such price differentials rarely

Kudrayvtsev 35

CHAPTER 3: The Order Book

arise, but when they do, exchanges are there to pick the pennies up off the ground.

3.1.4 Selling Short

The most important and impactful order type “added” to the stock market by brokers
(in addition to those we described previously) enables selling short—the bane of
/r/wallstreetbets. Shorting a stock involves taking a negative position; you bet that
its price will go down rather than up.

Suppose $IBM is selling at $100. You
think $IBM is overhyped and want to
short it. Lisa, on the other hand, thinks
its still got plenty of growth ahead
and wants to buy in. Joe holds 100
shares of $IBM, and Joe is a great guy.
Even though he wants to hold onto his
shares, he’s willing to lend them to you
(well, his broker is).

You borrow Joe’s shares and sell them
to Lisa; she gives you $10,000 in exchange. At the end of the day, you now have
$10,000 in your account and owe Joe 100 shares of $IBM.

Joe is eventually going to want his
shares back. Suppose $IBM is now sell-
ing at $90 and you want to cash out.
Lisa doesn’t want to get rid of her
100 shares; she’s still bullish on $IBM.
Thankfully, there are plenty of people
out there buying or selling shares at any
given time; Nate is willing to sell his
100 shares. You give those 100 shares
back to Joe, fulfilling your obligation.

But you only paid $9,000 for those shares, so you’re left with a nice $1,000 profit in
your account!

What Can Go Wrong?

What if the price didn’t drop down to $90? If you bought them from Nate at $150
you’d be out $5,000. This is worse than the situation with regular trades. If your
(owned) stock goes down in value after you buy and you decide to sell, you still have
money, just less of it. In this case, you actually owe your brokerage money once you
exit your short position.

Kudrayvtsev 36

https://www.reddit.com/r/wallstreetbets/

MACHINE LEARNING FOR TRADING

3.2 Exchange-Traded Options

Brokers often offer a variety of order types to fulfill needs for complex and deep
trading strategies. As we covered in Making Orders, exchanges only support market
and limit orders, but brokers are free to add infinite layers of complexity on top of
those as long as they can somehow be reduced to aside.

Another such custom order type is , and this section will provide a barebones intro-
duction to the topic.5 We’ll cover what options are, how to read an options chain,
what call and put options are, and the basic strategies we can employ with options.
Furthermore, we’ll discuss the purpose of options, how to price them, and how to
combine options contracts into more advanced strategies that correspond to a very
specific position based on a very specific prediction of market behaviour well beyond
our tradition “long” and “short” positions.

An option is a legal contract which gives the buyer the right, but not
the obligation, to buy or sell the underlying stock at a specific price
on or before the expiration date.

Specifically, a call option gives you the right to buy a stock at a specific price, and a
put option gives you the right to sell a stock at a particular price. We’ll start with
the former.

The “specific price” we’re referring to is known as the strike price. The “expiration
date” in reference specifically refers to U.S.-based options trading: in the European
model, options contracts can only be executed on the expiration date.

3.2.1 Options Chain

Take a look at an options chain for $AAPL stock in Table 3.1.

The calls column is the expiration date: you would have up until (and including)
that day to exercise your option. Otherwise, it simply goes away. The root is
the underlying security, in this case, Apple stock. The strike column specifies the
guaranteed price at which you can purchase the stock if you exercise the option,
regardless of what the real price of the root is. The last column specifies the price
at which that option traded at, at market close for that day. Net shows the change
in options price from the previous time period (if any). The open interest column
shows how many pending orders for that option are in the market right now. Notice
that the interest for “round numbers” is much higher for no apparent reason: the $105
and $110 options have far more orders.

5 This section is based on the introductory lecture by Dave Byrd for the course on options trading.

Kudrayvtsev 37

https://www.youtube.com/watch?v=5ompRHd0P68

CHAPTER 3: The Order Book

Calls Root Strike Last Net Vol Open Int
Dec 16, 2016 $AAPL 101 0 19
Dec 16, 2016 $AAPL 102 9.05 0 2
Dec 16, 2016 $AAPL 103 7.95 0 10
Dec 16, 2016 $AAPL 104 7.90 0 25
Dec 16, 2016 $AAPL 105 7.16 0.11 26 10656
Dec 16, 2016 $AAPL 106 5.90 0.30 140 65
Dec 16, 2016 $AAPL 107 5.26 0 26
Dec 16, 2016 $AAPL 108 4.43 0.56 119 540
Dec 16, 2016 $AAPL 109 3.49 0 215
Dec 16, 2016 $AAPL 110 2.73 -0.17 769 64871
Dec 16, 2016 $AAPL 111 2.10 -0.14 115 2660

Table 3.1: An options chain for $AAPL stock.

An option holds 100 shares of the underlying stock; never more, never less. The price,
though, is per share. That means if you wanted to buy a call option at $103, it’d cost
you $795 based on the last price in Table 3.1.

Once you own an option, at any time during the trading day until December 16th,
you can buy Apple stock at a guaranteed price of $103 per share (running with the
same example). Of course, the money you actually spent on the option is long-gone,
so you’d want to ensure that to break even, the actual price of Apple is far-enough
above $103 that if you were to sell, you’d make enough money to recoup the price of
the option.

3.2.2 Why Options?

Why wouldn’t we just buy the stock? What flexibility or benefit does trading options
on that stock give us?

Let’s work with a running example of an $AAPL call option for a strike price of $110
for $2.73 a share, as described in Table 3.1. Suppose that the price of $AAPL today
is 111.57. Then, suppose that $AAPL rises to $120 on or before December 16th.

If we bought 100 shares, we’d be out $11,157, then gain $12,000 upon selling, netting
us $843.

Suppose that instead we buy the 110 call option. We’d be out $273. If we were to
exercise our option on the day $AAPL hits $120, we can buy it at $110 per share,
costing us $11,000. We can then immediately sell it for the same $12,000 gain, but
that nets us $727 of profit.

The profit is lower, but our risk was far less. We only spent $273 up front instead of
$11,157 in our “bet” that $AAPL would go up. The rest of our available funds are not
tied up and can be used for other things. This is an example of the leverage benefit

Kudrayvtsev 38

MACHINE LEARNING FOR TRADING

behind options; we can control more money with less money. Similarly, if things don’t
go our way, we lose far less.

Suppose instead that by December 16th, $AAPL fell to $100 instead of rising. Our
“buy-and-hold” strategy loses $1,157, but our options strategy only cost us that same
$273 as before; we’re under no obligation to exercise our option (it’s in the name:
exercising is optional).

In summary, we like that we:

• cannot lose more than the premium we paid up-front for the option; and

• get leverage, in that we still get most of the upside potential but cap the down-
side, and only tie up the cost of the option rather than full cost of 100 shares
of the stock.

However, we don’t like that we:

• lose money on the premium; it’s impossible to get back. Some people prefer to
have an asset, even if it drops in value, rather than put up with the sunk cost
of the options.

• have an expiration date; by owning the asset, we bet that it will go up eventually,
whereas options place a very specific restriction on the period of growth (or loss,
for put options) that has value.

• don’t own the stock. This might seem obvious, but there are implications: by
not owning the stock, you have no voting rights in the company, nor can you
accrue dividends that may come with it.

3.2.3 Properties of an Option

Notice that the cost of an option goes down as it gets closer to $11. This is a depiction
of the moneyness of that option.

Intrinsic Value

Remember, you can exercise an option any time before an expiration date. That
means you can buy and execute an option immediately; if the strike price is below
the current price, you could be making instantaneous profit. The price of the option
itself has to account for that.

For example, suppose the current price of $AAPL is $110.55. You can buy a 110 call
option, immediately exercise the option, and sell your 100 shares of $AAPL for the
market price; this would net you $55 in profits. To prevent this from happening, the
option naturally costs more than that profit; in the case of Table 3.1, it costs $273 to
buy that option.

Kudrayvtsev 39

CHAPTER 3: The Order Book

This base profit difference is a measurement of the option’s intrinsic value, a concept
we’ll return to later, but in the context of a company. More specifically, the intrinsic
value of an option is the difference between its strike price and the underlying stock’s
price; it’s a metric of immediately exercising and acting upon that “in-the-money”
option. Not all options have an intrinsic value; you can’t always make a profit with
an immediate turnaround. These are called “out-of-the-money” options. The intrinsic
value of the 110 call from before is $0.55.

Time Value

What explains the remaining gap between the $0.55 intrinsic value and the actual
$2.73 option price? As the options get closer to their expiration date, their likelihood
changes drastically. On December 15th, it’s incredibly unlikely that $AAPL will fall
from $110.55 to $101, for example.

This is called the time value of the option: it’s the excess premium cost of an option
beyond its intrinsic value, attributed to time-to-expiration.

Time Decay

Remember, the option itself is an asset that can be bought or sold. If you change
your mind about it, you can sell it to another individual on an exchange the same
way you can buy or sell a stock. However, if the stock hasn’t gone in the direction
of your option, it’s likely that you will lose money by selling it (though hopefully less
money than you would’ve lost by simply letting it expire).

This loss also grows as the expiration date gets closer; it’s called the time decay of
the option. It’s also called theta (θ), the rate at which an option is currently losing
its time value. In other words, it’s the first derivative of the option’s time value.

As the expiration date approaches, the time decay approaches zero as options ap-
proach their intrinsic value; you would have to exercise the option immediately at
that point to realize some gains. People that trade options (rather than buy op-
tions to exercise them) typically try to close out their position 2-4 weeks before the
expiration date, passing off the option to someone who actually wants to take that
bet.

TODO: Black Scholes’ Model

3.2.4 Visualizing Options Strategies

We can use a profit-loss curve mapped against spot price to visualize how an options
strategy will perform. The “spot price” is just the market price of the stock we’re
working with.

Buy-Call Option

Kudrayvtsev 40

MACHINE LEARNING FOR TRADING

Figure 3.4: A profit-loss curve for a
simple buy call option.

For example, observe the plot on the right. We
can see that we start out with a loss that is the
size of the premium we pay for the option until
the spot price matches the strike price. Once
we’ve hit the strike price, we can exercise our
option and immediately sell our shares to make
a small profit.

That profit does not cancel out the premium,
of course, until a certain point in time which
is called the break-even point. It’s a linear
relationship because for every dollar above the
strike price, we can make a dollar (per share) in
profit by immediately exercise the option and
selling our shares. The profits then continues to grow with indefinite potential.

This is the simplest model of a buy call option. The further we get from it, the more
interesting things become and the more complex strategies we can visualize.

Maximum loss: premium of the option
Maximum gain: theoretically infinite

Buy-Put Option

A put option is the opposite of a call. We are still buying the right to a certain price
and we still pay a premium for that right. However, we are now buying the right to
sell the stock at a certain price.

Figure 3.5: A P/L curve for a sim-
ple buy put option.

You don’t actually need to own the stock in or-
der to sell it, since you will likely be on a margin
account6 and have the ability to sell short, then
immediately buy the stock to close out your
short position.

In other words, we’ll be able to sell the stock
for more and buy it back for less, pocketing the
difference.

We should expect our P/L curve to be opposite
the buy-call curve from Figure 3.4, and that’s
exactly what we see here. There is a minor,
though important difference, though: our max-
imum profit is capped because a stock’s value
cannot dip below $0.

6 Trading with a margin account essentially means you are working with borrowed money that you
will owe to your broker when you close out the account.

Kudrayvtsev 41

CHAPTER 3: The Order Book

Maximum loss: premium of the option
Maximum gain: strike price minus the premium

Write-Call Option

Figure 3.6: A P/L curve for a write
call option.

We’ve been operating under the assumption
that we’ll always be buying options, but doesn’t
that imply that someone out there is selling
them? And if so, that means we could be the
ones selling them. This opens up a new world
of possibilities. Selling an option is known as
writing options, and that’s what we’ll dive
into next.

When you sell someone a call option, you are
essentially selling them the right to force you to
buy the underlying stock at whatever price you
can (the spot price), then sell it to them at a
specific price (the strike price).

In this case, we pocket the premium for the op-
tion immediately, however we are now taking on the risk of an unprofitable trade in
the future. As the price of the stock passes the strike price, we are now losing money
with every step the stock grows beyond the strike price.

Maximum loss: theoretically infinite
Maximum gain: premium of the option

Write-Put Option

If the write-call was the flipped version of the buy-call, then we should expect the
write-put to be the flipped version of the buy-put.

Maximum loss: strike price minus the premium
Maximum gain: premium of the option

About 90% of all options are not realized and allowed to expire. This fact
is very important to consider when thinking about various trading strategies;
most of the time, you’ll be able to put that premium in your pocket.

Covered Calls

The power of trading options is not in these “naked” strategies which can have dev-
astating results if your bet is wrong. It’s about combining the strategies together to

Kudrayvtsev 42

MACHINE LEARNING FOR TRADING

Figure 3.7: The P/L curve for a write-put option.

hedge your bets7 and to take a very specific position on the market.

The most common of these “advanced” strategies is a covered call, in which you
buy a stock and then write a call. This means the call buyer can force you to sell
him your shares at a particular price, but you have predetermnined that price and
might not be forced into a certain market price point for the stock. There are three
outcome scenarios for this strategy:

• the stock ends above strike price:

In this case, the stock is “called away,” meaning we sell the stock at the specified
strike price and lose any profits that would come from the stock’s growth beyond
the strike price.

In other words, if we bought $AAPL at $110 and a write-call at $115, then
$AAPL rises to $120, we sell to our options buyer at $115 and s/he gets to
realize the gains beyond $115. However, we still get to realize the gains from
$110 to $115 as well as the premium they paid us.

profit = strike− purchase price + premium

We still make money, but not as much money as we would’ve just from buying
the stock. Similarly, we no longer own the stock anymore, so if we want to
continue profiting from an upward trend, we need to buy the stock again.

7 To “hedge your bets” is to protect yourself against loss by supporting more than one possible result
or both sides in a competition. In this context, it may involve combining multiple contradictory
options so that you are more likely to come out on top regardless of the outcome.

Kudrayvtsev 43

CHAPTER 3: The Order Book

• stock ends up, but below strike price:

This is the optimal case: we realize the profits from the rise and make money
from the premium, but we don’t have to deal with the fallout of the option
being exercised. We made money on the stock and we still own the stock.

profit = current− purchase + premium

• stocks ends down:

Once again, the option isn’t exercised and we still own the stock. Our losses are
theoretical and only actualized if we take the step forward and sell the stock.
The premium actually (partially) offsets the loss.

loss = current− purchase + premium

The covered call has the downside of not realizing maximal gains if the stock rises
significantly, however it does prevent losses from hitting you as hard by offsetting it
with the premium.

We can take a similar position except with a write-put option called a married put.

Butterfly

The butterfly strategy embodies a combination of options that are ideal for when the
market goes sideways. By “going sideways” we mean that the prices of our investments
remain within a tight range for a certain period; fluctuations are minor and there are
no breakouts or significant dips.

Figure 3.8: The loss-profit curve for the
butterfly strategy. Notice the inversion of
the y-axis values; this is just so that it
looks more like a butterfly.

The strategy involves buying 4 calls, all of
which are at different price points relative
to the current price: one above, one below,
and two close by. For example, if $AAPL is
at $111, we would buy a 105-call, a 115-call,
and two 110 write-calls.

If we use the same premium prices we had
in Table 3.1, we would have a net payment
of $223 worth of premiums:

−7.16 + (2 · 2.73)− 0.53 = −2.23

This is the cost to enter the butterfly posi-
tion.

Let’s look at the profit/loss curve on the
right. Again, we are hoping for a period of

Kudrayvtsev 44

MACHINE LEARNING FOR TRADING

low volatility; it hurts us if the spot price dips far below or above our strike prices.
Notice that the loss and gain potential is about the same; this is an intentional part
of our strategy.

At different points in time, different calls can be worthless. For example, at the first
intersection with the break-even point (a spot price of $107.23), the 105-call is worth
$223, whereas the 110 and 115s are worthless. At the peak, our 105-call is worth
$500, and the others are still worthless. At our second break-even point, the 105-call
is worth $777, whereas our 110s are worth -$277 each.

Maximum loss: total premiums for the options
Maximum gain: (middle− lower) ∗ 100− premiums

We’ve used four calls—two buys and two writes—to construct an exact profit-loss
curve that we’re comfortable with given the prediction that the market will stay
steady (not fluctuate much). This is just one example of using combinations of
options to craft specific strategies.

We could likewise spread out, compress, or disbalance the butterfly by changing the
spread between the calls.

Kudrayvtsev 45

Evaluating a Company

I nvesting in a company can be a gamble. To properly evaluate a stock and make
an informed decision about whether it should be bought, held, or sold, we need
to evaluate the company that issues it. There are a number of different factors

worth taking into consideration that we’ll cover in this chapter.

4.1 Metrics for Evaluation

Why does company’s value matter in the first place? We want to make money by
purchasing a company’s stock when it’s undervalued and sell it when it’s overvalued,
right? Generally-speaking, a company has a “true value” that increases monotonically
over time; it’s actual stock price, though, varies from that wildly. If we can identify
deviations correctly, we can make good trades and steady profits.

Suppose Acme Corporation can output $1 every year. How much would you say that
company is worth? There are a few potential answers. Is it worth:

• $1,

• $70, because after that you’ll be dead,

• $∞ because it will output $1 forever, or

• between $10 and $25 depending on interest rates?

Turns out all of these are valid choices depending on your valuation approach. The
last one is probably the “most correct” given a traditional point of view of valuation.

A company is often evaluated on one or more of the following metrics:

• Intrinsic value: this is a measurement based on the dividends that a company
puts out. A dividend is a cash payment to owners of that stock every quarter.
If you owned one share of $AAPL, for example, it would pay out around $1 per
year. Note that this payout is in addition to (or in spite of) changes to the
share price itself. Intrisic value assigns a valuation to a company based on this

46

MACHINE LEARNING FOR TRADING

Figure 4.1: Determining a company’s value helps you identify times at which a
trade would be appropriate.

payout.

• Book value: this is a valuation based on the assets that a company owns. Assets
include things like factories, stock (in the “this item is out of stock” sense, not
a financial sense), property, etc.

• Market cap: this assigns the value of the company to the value of a share times
the number of shares there are, as previously defined.

4.1.1 Intrinsic Value

If someone told you, “Hey, I can offer you a guarantee that I’ll give you a dollar a
year from now.” How much would you be willing to pay for that guarantee? Would
you rather have:

• that guarantee from the U.S. government (this is called a bond),

• that guarantee from your professor, or

• $1 right now?

Obviously, the best thing to have is a dollar right now. There is no risk or need
to wait. Furthermore, you probably trust the government more than your professor

Kudrayvtsev 47

CHAPTER 4: Evaluating a Company

(well, maybe not. . .), so you’d take that guarantee over the other.

It should be obvious that the value of a dollar in the future is worth less than a
dollar right now. There’s a risk that that dollar will never be delivered. Furthermore,
the value of a dollar often decreases over time due to inflation. How do we estimate
the value of these promises to deliver money in the future? The calculation of this
intrinsic value comes down to the interest rate:

present value =
future value

(1 + interest rate)i

Here, i is the amount of time1 before you receive your future value. If the U.S. gov-
ernment offered you a 1% annual interest rate on your $1, the present value comes
out to:

1.00

1 + 0.01
≈ $0.99

Figure 4.2: The exponential decay of the
worth of future promises.

In other words, it’s worth it to pay ≤
$0.99 today for a government bond of $1
a year from now. What if your professor
is offering you a 5% interest rate in order
to entice you and offset the fact that he’s
less trustworthy? You should be willing
to pay even less for that:

1.00

1 + 0.05
≈ $0.95

There is an obvious exponential decay
as the amount of time you need to wait
grows. The higher the interest rate, the
lower you should be willing to pay and
the faster the value drops.

This problem is analogous to dividends in real companies. If $AAPL pays out $1/share
in dividends every year, what is it worth paying for a single share? The “interest rate”
in this case is now a metric of risk; we instead refer to it as a discount rate. Given
that value, the value of the company to you would be the sum of the value of all of
its dividends, where d is the discount rate. This infinite sum converges to a simple
calculation:

∞∑
i=1

1

(1 + d)i
=

future value
discount rate

If we assume a $1 annual dividend as above and a discount rate of 5%, the intrinsic
value of that company would be 1/0.05 = $20.
1 i operates on the same time scale as the interest rate. For example, if it’s an annual interest rate,
i is a measure of years.

Kudrayvtsev 48

MACHINE LEARNING FOR TRADING

4.1.2 Book Value

The book value of a company is defined by the total assets that company owns
excluding its intangible assets and minus its liabilities.

Suppose a company owns four factories valued at $10m each, three patents at $5m
each, and a $10m loan. The book value of this company would be:

(4× 10)− 10 = $30m

Of course, this is a overly-complicated way to think about this. The intangible assets
are just irrelevant to the calculation, so it’s just tangible assets minus liabilities.

4.1.3 Market Capitalization

We can let the market determine the value of our company for us. We’ve already
defined the concept of market capitalization, but for completeness sake here it is
again:

market capitalization = share price× total shares

4.1.4 Knowledge is Power

Why does information about a company like news reports, leaks, and new products
affect its stock price? The way investors express their opinions on the value of a
company is through its stock price (and consequently its market cap). If they believe
the news devalues the company, they sell their shares and drive the price down. Let’s
look at how information can influence the other two metrics—intrinsic and book value.

If news comes out that a CEO is ill, the probability of investors getting the same
dividends from that company as before decreases. This is “company” news and it
directly lowers the intrinsic value.

If news comes out that the soil in Silicon Valley releases a chemical that increases
brain capacity, the value of the assets of all companies in that area increases. This is
“sector” news and directly increases the book value. We could similar have “market”
news that affects all sectors.

Example 4.1: Stock Evaluation

Let’s bring it all together and check our understanding with an example.

The company owns 10 airplanes valued at $10m each, its brand name is
worth $10m, and it has a $20m loan. It pays out $1m in dividends annually
across 1 million shares and has a 5% discount rate. Its stock price is $75.

What is the company’s book value, intrinsic value, and market capi-

Kudrayvtsev 49

CHAPTER 4: Evaluating a Company

talization? Finally, would you buy this stock?

Give yourself a moment to work it out before you continue reading.

Its book value is $80m: (10× $10)− $20.

Its intrinsic value is $20m: $1m/0.05.

Its market capitalization is $75m: 1m shares× $75.

You should absolutely buy this entire company right now. For $75m, you
can turn around and immediately sell all of its assets and pay off its loans
for a cool $5m profit. The “low” intrinsic value here is completely irrelevant,
and this is why the market cap for a company very rarely drops below its
book value.

4.2 Capital Asset Pricing Model

Developed independently by researchers in the 1960’s, the capital asset pricing
model (CAPM for short) explains how the market impacts individual stock prices
and provides a mathematical framework for hedge fund investing.

Let’s briefly recall how portfolios work. The total return of a portfolio is the sum of
each asset’s returns weighed by their ratio wi:

rp(t) =
∑
i

wiri(t) (4.1)

Example 4.2: Portfolio Return

As a quick example, assume Stock A goes up +1% and Stock B goes down
−2%. 75% of your portfolio is made up of $A and you have a short position
on $B so its weight is −25%.

What is the return on your portfolio?
Applying our formula from (4.1) is trivial:

rp(t) = (0.75 · 0.01) + (−0.25 · −0.02) = 1.25%

This leads us to the concept of a market porfolio, which is effectively an index of a
particular market. For example, the S&P 500 (tracked by $SPY) represents the 500
largest companies that are trading on U.S. exchanges; it changes each day based on
the value of those companies. There are similar indices in other countries like $FTA

Kudrayvtsev 50

MACHINE LEARNING FOR TRADING

in the United Kingdom or $TOPIX in Japan. The market portfolio is a combination
of these stocks, often weighed by their market cap (called cap-weighted):

wi =
capi∑
j capj

Each of these markets are broken into sectors like energy, technology, manufacturing,
finance, etc. . . As we’ve discussed, news affects sectors and individual companies more
often than it affects an entire market. Some stocks have large weights and impact
the market portfolio more significantly than others, for example, Apple ($AAPL) and
Exxon ($XON) are each about 5% of the S&P 500.

This leads us to the CAPM equation:

ri(t) = βirm(t)︸ ︷︷ ︸
market

+ αi(t)︸︷︷︸
residual

(4.2)

You might recognize this as the equation of a line: y = mx+ b; that’s no coincidence.
We’ve seen α and β before in Python for Finance when we discussed scatter plots: β
was the slope and α was the y-intercept of a stock plotted against an index.

The CAPM equation states that the return for an individual stock i on a particular
day t is the market return rm scaled by some β plus some residual α. It asserts
something important: a significant part of the return of a stock is affected just by
the market at large. Most stocks have a β ≈ 1: when the market goes up, the stock
goes up approximately the same amount. The CAPM further asserts that the residual
αi(t) is essentially a random variable; as t→∞, the factor becomes irrelevant because
it continually cancels itself out. In other words, its expectation is 0: Eα = 0.

4.2.1 Portfolio Management Under CAPM

The inception of CAPM led to a debate about whether passive or active investment
is better. Passive investing involves simply buying an index and holding it, letting the
growth of the market bring in profits. Active investing is (obviously) more involved:
you pick and choose the individual stocks (or change the weights of an index) in hopes
you can beat the market.

Let’s examine the CAPM equation under these two philosophies:

ri(t) = βirm(t) + αi(t)

Both camps agree that the β term is correct: the return is most significantly affected
by the market. The contention comes from the α term: CAPM says its unpredictable
and 0 on average. Active managers, though, claim they can predict α better than a
coin flip.

Kudrayvtsev 51

CHAPTER 4: Evaluating a Company

4.2.2 CAPM for Portfolios

To compute the return for an entire portfolio under the CAPM, we just slap the
weighted summation on (4.2):

rp(t) =
∑
i

wiβirm(t) + αi(t) (4.3)

We can pull out the β term from the summation: βp =
∑

iwiβi. Here’s where the
management strategies we just discussed differ, though. CAPM says Eαi

= 0 so we
can lump them all into a single term:

rp(t) = βprm(t) + αp(t)

Active managers, though, claim they can adjust the weights to outperform random-
ness, so the summation is still necessary:

rp(t) = βprm(t) +
∑
i

wiαi(t)

The CAPM implies some things about a robust portfolio. In a downward market, we
want β ≤ 1, so we don’t lose as much money as the market in general. Contrarily, we
want β ≥ 1 in an upward market to outperform just tracking the market.

4.2.3 Arbitrage Pricing Theory

The arbitrage pricing theory, developed in 1976 by Stephen Ross, digs deeper
into the CAPM equation and notes that the βi for a stock i is not representative of
the sectors its composed of. For example, RobinHood could swing fairly significantly
with both the financial and technology sectors, but less so with manufacturing. To
properly model that, we’d want to break up its β into βF rF and βT rT :

ri = βiF rF + βiT rT + βimrm + . . .+ αi

This would, in theory, give us a more accurate pricing model.

4.2.4 CAPM for Hedge Funds

By picking stocks with appropriate β values, the CAPM pricing model virtually guar-
antees a positive return. The key, of course, still lies in picking the stocks.

Suppose we’re geniuses (or time travelers) and make perfect predictions about two
stocks: Stock A has a β = 1.0 and will be +1% over market, and Stock B has a
β = 2.0 and will be −1% below market. The behaviour of the stocks is plotted in

Kudrayvtsev 52

MACHINE LEARNING FOR TRADING

Figure 4.3

Figure 4.3 below; if we enter our positions at the dashed line below—long $50 on
Stock A and short −$50 on Stock B—how much money will we make?

Well, the market (magically) had no change during our investment period, so βArm =
βBrm = 0. Our return, then, is:

r = rA + rB

= βArm + αA + βBrm + αB

= αA + αB

= (0.01 · $50) + (−0.01 · 0$50)

= $0.50 + $0.50 = $1

What if the market went up 10% during our investment time frame? In that case,
the equation gets a little more complicated:

r = βArm + αA + βBrm + αB

= (1 · 0.10 + 0.01) · $50 + (2 · 0.10− 0.01) · −$50

= $5.50− $9.50 = −$4

Contrarily, what if the market went down 10%? Our short position on a β = 2 stock
pulls us into the black:

r = βArm + αA + βBrm + αB

= (1 · −0.10 + 0.01) · $50 + (2 · −0.10− 0.01) · −$50

= −$4.50 + $10.50 = $6

If we’re not careful about how we allocate money, perfect α and β knowledge won’t
save us. Lets plug our assumptions into the CAPM and see how our stock choices

Kudrayvtsev 53

CHAPTER 4: Evaluating a Company

affect our portfolio outcome, keeping the market return as our variable. From (4.3),
we know that: rp =

∑
iwiβirm(t) + αi(t).

Plugging in our terms gives us:

rp =
∑
i

wiβirm(t) + αi(t)

= (wAβA + wBβB)rm + wAαA + wBαB

= (0.5 · 1− 0.5 · 2)rm

= −0.5 · rm + 0.01

This corresponds to our calculations above. Though we have perfect predictions and
information about our αs, we have no knowledge or control over the market returns,
rm. Is there a way we can remove that component? In other words, can we make
βprm = −0.5rm = 0? Remember that

βp = wAβA + wBβB

The question is, then: how can we choose weights for our portfolio such that they
evaluate to zero? For what wA, wB is the following true?

wA + 2wB = 0

Don’t forget we also have the constraints that wA > 0, wB < 0 (since we’re short-
ing Stock B), and the absolute value of their sum is 1. We can arrange all of this
information into a simple system of equations a high-schooler could solve:{

wA = −2wB

|wA|+ |wB| = 1

We can easily solve this system to get wB = −1/3, wA = 2/3. Plugging this back into
the CAPM portfolio equation gives us:

rp = (wAβA + wBβB)︸ ︷︷ ︸
=0

rm + wAαA + wBαB

= wAαA + wBαB

= 0.67 · 1.0 +−0.33 · −1.0

= 0.01

This means that regardless of the way the market moves, we will get a 1% return. Of
course, this heavily relies on the fact that the αs we claimed to know are in fact true,
and the βs accurately represent the stocks’ reactions to market changes. The main
purpose of this was to demonstrate that we can minimize the effects of the market
on our portfolio with βp = 0.

Kudrayvtsev 54

MACHINE LEARNING FOR TRADING

4.3 Technical Analysis

There are two broad categories of choosing stocks to buy or sell: fundamental
analysis and technical analysis. In the first section of this chapter, we discussed
Metrics for Evaluation that fall in the former category; fundamental investors analyze
the aspects of a company that estimate its value and look for opportunities to trade
when the stock price goes above or below that value. On the other hand, technical
analysis disregards the true value of a company, instead looking for and leveraging
trends in a stocks price.

Technical analysis looks at only at historical price and volume. It involves computing
statistics called indicators that are heuristics that hint at a buy or sell opportunity.
Since it doesn’t consider the value of a company, it might be more correct to call this
a trading strategy rather than an investment strategy.

Technical analysis is often effective in the short term: Buffet invests in the long-term
after doing thorough due diligence about the true value of a company, while high-
frequency traders use indicators to buy and sell stocks within seconds. Since there
are so many traders looking at individual indicators, it’s harder to leverage them as
an individual. Consequently, well-crafted combinations of indicators can be much
more unique and effective. Finding stocks that contrast heavily to the market can
also be beneficial; if every stock follows the market, you simply can’t do better than
the market.

4.3.1 Indicators

There are thousands of technical indicators out there, but we’ll cover a few solid, com-
mon ones you may see: momentum, simple moving average, and Bollinger bands.

Momentum

Momentum is one of the simplest indicators; it’s the rate of change of a stock. Over
a certain number of days, how much has the price changed?

The first red line in the price graph above has steep negative momentum, whereas the
second red line has steady positive momentum. The common way some traders will
use momentum as an individual indicator is by assuming that a stock’s momentum
will continue.

Kudrayvtsev 55

CHAPTER 4: Evaluating a Company

Figure 4.4: The contrast between fundamental and technical analysis. In the short term, technical
analysis has a lot of value that quickly peters out; fundamental analysis, though, is most effective
long-term as the true value of the company can shine. There are similar differences in decision speed
vs. complexity, showing us how computers can shine in short-term trading, though they’re less useful
in long-term value-based investing.

Snippet 4.1: Momentum is a simple calculation measured over a time window
of n days. It’s a percentage, so it’s often ∈ [−0.50, 0.50].

momentum[t] = (price[t] / price[t - n]) - 1

Kudrayvtsev 56

MACHINE LEARNING FOR TRADING

Simple Moving Average

Much like momentum, the simple moving average (or SMA) operates on an n-day
window of time. The SMA is then just the average over those n days; it looks like a
smoothed value of the price chart that lags behind.

The points of intersection between the simple moving average and the price graph tend
to be important when using SMA as an indicator. Combined with momentum, this
can indicate a trading opportunity. For example, in the above graph, the downward
momentum and SMA intersection suggests that the stock may turn around its trend
soon, indicating a buying opportunity.

Furthermore, gaps between a stock price and its moving average can be interpreted
as a proxy for its true underlying value. The far-left downward excursion suggests
a buying opportunity since the stock price has dipped significantly below its “true
value” estimated by the SMA, and vice-versa for the two upward excursions on the
right.

Snippet 4.2: The simple moving average is a ratio between the current price
and the average price over a time window of n days. The SMA is a percentage,
so it does not often deviate from being ∈ [−0.50, 0.50].

sma[t] = (price[t] / price[t - n : t].mean()) - 1

Bollinger Bands®

We’ve seen Bollinger bands before: it’s a ±2σ deviation from the simple moving
average. The bands are good thresholds for acting on price excursions, allowing short
spikes and deviations in the stock price.

The reason why 2σ is a good value is because it naturally varies with the volatility of
the stock. In periods of low volatility, we would want to act on larger spikes, whereas
in periods of high volatility we would want to let those slide a little more.

Kudrayvtsev 57

CHAPTER 4: Evaluating a Company

Points at which a stock crosses to the outside of its Bollinger bands then re-enters are
often considered to be trading opportunities. For example, in the above graph when
the stock spikes above the 2σ band and dips back in, that is a selling opportunity.

Snippet 4.3: Bollinger bands are µ± 2σ. We typically expects to see BB values
∈ [−1, 1]; deviations from that often indicate trading opportunities.

bb[t] = (price[t] - sma[t]) / (2 * std[t])

Example 4.3: Bollinger Bands — Buy or Sell?

Given the following graph, do each of the circled points indicate a buy
signal, a sell signal, or neither?

Answers

In 1○, we see a spike outside of the upper band, then back in. That is a
signal to sell.

Kudrayvtsev 58

MACHINE LEARNING FOR TRADING

In 2○, we see a spike outside of the lower band, but no re-entering. This
isn’t an indication of anything and prevents us from a premature buy
when the stock could be plummeting for a while.

In 3○, we re-enter through the lower band, indicating a buy signal.

In 4○, we spike below the lower band and re-enter, again signaling a buying
opportunity like in 3○.

Normalization

Notice that each of our indicators has a different range. This makes it difficult to
plug them into plots or learning models, so we need to normalize them. This is
straightforward and something we saw very early on in chapter 1.

Given an array of values, v, the normalized array in the range [−1, 1] is simply:

v̂ =
v − µv

σv

4.4 Anomalous Price Changes

Until this point, we’ve assumed that stock pricing data follows a sensible trend and
that large leaps or discrepancies in price can be attributed to news or “market forces.”
That’s not always true, though. Things like stock splits, dividends payouts, etc. can
change the price but not indicate a change in company value or the result of a trade.

Before we get to that, though, we need to briefly discuss how stock data is aggregated.

4.4.1 Data Aggregation

The data we’re working with—volume and price data—is discretized by a tick, or a
single buy/sell transaction. For high-volume and highly-liquid stocks, there might be
hundreds of thousands of ticks occurring every second over several exchanges, which
is a massive amount of data. For ease-of-use, brokers often aggregate the tick data on
a minute-by-minute or hour-by-hour basis, summarized by its volume as well as its
open, high, low, and close values. These should all be fairly self-explanatory: over
a given time period, open and close are the first and last transactions; high and low
are the highest and lowest prices; and volume is the number of trades that occurred.

4.4.2 Stock Splits

If we look at this aggregated ticker data over a sufficient period of time, we may
see areas with massive drops in value that are uncharacteristic for the company.
Of course, they may be attributed to actual catastrophic events, but that’s highly
unlikely.

Kudrayvtsev 59

CHAPTER 4: Evaluating a Company

A stock split is a way for a company to lower its per-price share. This may occur to
make the stock more accessible2 (i.e. its price is too high), to make the shares more
divisible, etc. If you own stock in company and it undergoes a split, you still come
out with the same total value, just split across more shares.

In a price chart, this is dealt with my using an adjusted closing value. Going back-
wards in time, when encountering a split, the “actual” price is divided by the split
factor to create the adjusted price. This adjusted price is easier to understand.

Figure 4.5: A fabricated stock chart for $IBM featuring a 4-way split and a
2-way split that (incorrectly) appears as a −75% and −50% drop in value when
viewing raw price data (left). On the right is the adjusted price chart (in red)
after accounting for the splits.

4.4.3 Dividends

We discussed dividends previously when we talked about calculating the intrinsic
value of a company. Dividends are issued periodically and they have an effect on the
stock price.

Consider a company that pays out a $1 dividend whose “true worth” is $100 per share.
What should its stock price look like the day before and the day of the dividend?
Remember, that would mean we own the $1 dividend AND a share of the company
that’s worth $100.

2 Options trading—like shorting—often happens on multiples of 100 shares; given a high-enough
stock price, this becomes relatively inaccessible.

Kudrayvtsev 60

MACHINE LEARNING FOR TRADING

What ends up happening is that as the payout day gets closer, the share price will
grow towards $101, sharply dropping off back to $100 after the payout. This is because
people know that they will get $101 worth of value on that day: the dividend and
the share.

Just like with stock splits, we need to adjust the historical stock prices to take into
account dividend payout behaviours.

Figure 4.6: Dividend announcements affect share prices and the payout usually
results in an uncharacteristic price drop. For an accurate evaluation of the his-
torical price data, we need to adjust it based on the payouts by subtracting the
dividend payout from the price.

Kudrayvtsev 61

Beating the Market

I s it possible to beat the market? If so, how do we do it?

5.1 The Efficient Markets Hypothesis

In the previous chapter we discussed the capital asset pricing model and how we could
make money despite it. It hinged on some very important assumptions, though. We
assumed that there was untapped information in historical pricing data that we could
discover and leverage, giving us an edge over other traders; we also assumed that we
could use new information about a company, like earnings data, to make well-informed
long-term trades. The efficient markets hypothesis states that neither of these
are true.

The EMH hinges on a couple of (fairly true) assumptions about the market. It
assumes that the market has a large number of investors, and new information about
the market arrives relatively randomly. This essentially guaranteed that prices will
adjust quickly in response, and thus prices already reflect all available information.

The weakest of these assumptions, in my opinion, that may “prevent” a savvy investor
from making money is that (a) information arrives randomly and (b) the market reacts
quickly.

Even if (a) is the case, information will at some point randomly come to you early
on enough to act. Where does information come from? Typically, traders look at
the indicators involved in both fundamental (earnings, dividends, etc.) and technical
(price, volume, etc.) analysis. Exogenous information as well as information from
company insiders can also be incredibly impactful. Each of these “categories” of
information has a relationship to the efficient markets hypothesis.

5.1.1 Three Forms

We will analyze each of the three forms of the EMH in turn.

62

MACHINE LEARNING FOR TRADING

Weak Form

The weak form of the EMH asserts that future prices cannot be predicted by analyzing
historical prices. Because the current price already integrates all possible information
from the past, such an analysis has no bearing due to the impact of future, unknown
information.

This is called the “weak” form of the EMH because it still leaves room for fundamental
analysis which evaluates the company as a whole rather than by searching for trading
patterns.

Semi-Strong Form

The semi-strong form of the EMH asserts that prices adjust rapidly in response to
new public information. This breaks down the fundamental analysis “loophole” in the
weak form: when a company’s quarterly reports become public, the market responds
immediately, making it nearly impossible to act on these changes.

Strong Form

Of course, we can still rely on insider information, right? Wrong, according to the
strong form of the efficient markets hypothesis. It (boldly) asserts that the price
always reflects all public and private information. Secret information that might
indicate a price increase will already be incorporated into the price.

5.1.2 EMH Validity

If the EMH in all of its forms is correct, this entire chapter (and arguably all of the
chapters) is useless. We would be unable to ever make any money on the market
aside from simply buying $SPY and holding it in the hopes that the U.S. economy
doesn’t go under.

Don’t forget the most important word of the EMH: hypothesis. It makes a bold claim
that’s essentially impossible to prove, and situations absolutely arise that “violate”
it. Thankfully, we’ve empirically demonstrated that certain forms of the EMH can
be violated.

The “strong” version of the EMH is particularly suspicious: we’ve definitely seen and
heard about insiders leveraging their internal knowledge about the company to make
significant profit. Sometimes, they even go to jail for it.

Even the “semi-strong” version of the EMH is subject to scrunity. Figure 5.1 shows
the 10-year price-to-earnings ratio (often abbreviated P/E) for stocks over a number
of decades. We can see a clear trend regardless of the time period: companies with
lower P/E ratios (meaning their quarterly earnings are not too-large of a multiple of
their stock price) tend to have higher annualized returns over a 20-year period.

Kudrayvtsev 63

CHAPTER 5: Beating the Market

Figure 5.1: A plotting of the 10-year price-to-earnings ratio for a sample of
companies from 1890–1985 versus their annualized returns. We can see that
companies with lower P/Es tend to have higher returns.

Because of this trend, we can argue that P/E ratios—which are a fundamental analysis
indicator—can give meaningful insights about a stock, something that the semi-strong
form of the EMH claims is impossible.

5.2 The Importance of Diversification

Why would you diversify instead of going all-in on $NVDA during the cryptocur-
rency boom? Miners are buying high-end graphics cards like candy; it’s a no-brainer!
Because when the crypto bubble pops, so does $NVDA’s and you lose thousands of
dollars. Thank you cryptocurrency for teaching me that lesson; my portfolio is still
recovering.

Diversification is necessary, especially if you don’t know what you’re doing (e.g. most
of us).

Richard Grinold was seeking to relate the following metrics as a guideline towards
portfolio composition: performance, skill, and breadth. For example, you may be
highly-skilled at picking stocks that do well, but you don’t have enough breadth to
find those stocks often. He came up with Grinold’s fundamental law for active
portfolio management:

performance = skill ·
√
breadth

This law implies that your portfolio’s performance can improve by getting better,

Kudrayvtsev 64

MACHINE LEARNING FOR TRADING

or by simply including more stocks, although this secondary growth method is far
slower. This equation simplifies to an information ratio:

IR = IC
√

BR (5.1)

Where IC is the information coefficient and BR is the breadth. Now that we’ve
stated this “law”, let’s go through the intuition and rationale that makes it hold.

5.2.1 Coin Flipping Casino

We’ll be exploring Grinold’s law through a thought-experiment called the “coin-
flipping casino.” Instead of trading stocks, we’lll be flipped a biased coin. This
bias is much like α; we want to do better than random chance. We’ll say the coin has
a 51% chance to come up heads. Similarly, the uncertainty of the outcome like β.

Betting works as follows: if you bet n coins and win, you have 2n coins. If you lose,
you have zero and the game is over. The casino has 1000 tables, each with its own
biased coin, and you have 1000 tokens (an indication of a bet) that you can distribute
among the tables as you see fit.

How would you distribute your tokens? Is it better to go all-in on one coin flip, spread
your tokens among all of the betting tables, or something in between? We need to
consider both risk and reward.

The expected return of any bet is the chance of winning times the subsequent winnings
plus the chance of losing times the resulting losses. If Pr [win] = 0.51, then for a single
bet:

0.51 · 1000 + 0.49 · −1000 = $20

So we should expect to win (on average, over infinite trials) $20 if we put 1000 coins
down on one table. For multiple bets, the loss or gain is ±$1 but we have 1000 trials,
so

1000 · (0.51 · $1 + 0.49 · −$1) = $20

The reward is the same for both scenarios! How can we prove, then, that the spread-
out bet is better? We need to calculate risk, and there are a couple of ways to
demonstrate it.

Losing It All What’s the chance that we lose all of our money? For a single bet,
we have a 49% chance we’ll lose everything. For multiple bets, we have 1000 flips and
each one has a 49% chance of being lost, but to lose all of them, it’d be (0.49)1000

which is astronomically unlikely.

Standard Deviation Another way to analyze risk is by looking at the standard
deviation of the individual bets. Assume we bet one token per table and we’re now

Kudrayvtsev 65

CHAPTER 5: Beating the Market

looking at the result after-the-fact. For example, we might lose one, gain one, lose
one, lose another one, and so on, for our 1000 trials:

−1, 1,−1,−1, 1, 1, . . . , 1︸ ︷︷ ︸
1000 trials

The standard deviation is just 1; any given trial is either a win or a loss.1

What about for one 1000 token bet and 999 zero token bets? The standard deviation
is a lot different. On the first table, we either win or lose 1000, and the rest of the
tables are 0: {

+1000, 0, 0, . . . , 0 if we win
−1000, 0, 0, . . . , 0 if we lose

The standard deviation works out to be 31.62 for both of these cases, which is a far
larger variance than in the previous case. Again, this signifies how much riskier the
latter approach is.

Clearly, 1 token on each of the 1000 tables is the way to go because the other extreme
is incredibly risky. As we saw, expected return for both is actually exactly the same;
it’s just that one has a much lower risk.

If we calculate the risk-adjusted return (also known as the Sharpe ratio) for our two
scenarios, we get:

SRsingle = 0.63

SRmultiple = 20

Fascinatingly, if we multiply our very safe single bet by our “breadth” (i.e. spread
amongst 1000 tables) as in Grinold’s Law, we get the same SR as the other case:

SRsingle = 0.63 ·
√

1000 = 20 = SRmultiple

5.2.2 Applying Grinold’s Law

RenTec is a hedge fund founded by a math and computer science professor that uses
algorithms much like those we’ve covered in this course to make its trades. It makes
on the order of 100,000 trades a day. On the other hand, Warren Buffet’s hedge fund
typically just purchases and holds 120 stocks.

1 I wish he went into this more as my probability skills are trash and this explanation is not
satisfying.

Kudrayvtsev 66

MACHINE LEARNING FOR TRADING

Both of these funds have comparable performance and produce similar returns. This
is Grinold’s Law in action: RenTec’s lack of skill in choosing stocks is downplayed by
its diversity. Let’s examine this further.

Recall the capital asset pricing model equation (4.2), which can effectively be broken
down into a market and skill component:

rp(t) = βprm(t)︸ ︷︷ ︸
market

+αp(t)︸ ︷︷ ︸
skill

We can relate this to the information ratio in Grinold’s Law. Recall:

IR = IC
√

BR

The information ratio can be reframed as the Sharpe ratio of the “skill component,”
it’s a measurement of “excess return” that is attributed to skill:

IR =
mean(αp(t))

std(αp(t))

We can find these values by looking back historically; the market return of the port-
folio, rm(t), is based on the way the market performed over that same period of time.
All that remains is α.

The information coefficient is a correlation of forecasts to returns; if someone made
a forecast on $IBM that it would go up 1% and it actually went up 0.5%, that would
be a positive correlation.

The breadth term of the equation is a measurement of the number of trading oppor-
tunities per year. Even with a “buy-and-hold” strategy, you still account for all of the
stocks in that portfolio and the fact that you could trade them 252 times in a year.

Example 5.1: A Tale of Two Traders

Suppose we have two traders, Simons and Buffet, who have identical infor-
mation ratios (e.g. overall portfolio performance). However, Simons’ algo-
rithms are 1/1000th as smart as Buffet’s brain. Buffet only trades 120 times
a year.

How many trades must Simons execute for their IR’s to be the same?

Answer:onehundredandtwentymilliontrades

Kudrayvtsev 67

CHAPTER 5: Beating the Market

Solution

Our known information is: 
BRB = 120

ICS = 1
1000 ICB

IRS = IRB

Thus this is a matter of solving the equality:

IRS = IRB known information

ICS
√

BRS = ICB
√
BRB (5.1)

1

1000
ICB

√
BRS =

√
120 · ICB known information√

BRS =
√
120 · 1000000 cancel and multiply by 1000

BRS = 120000000 = simplify

= 120 million trades

5.3 Portfolio Optimization

Suppose you have a set of stocks that you have determined are good investments;
given that your pocketbook is limited, how many of each should you choose?

There are many potential answers to that question. In this section, we’ll return to
the idea of Portfolio Optimization. We’ll be answering the question in a very specific
way: given a set of equities and a target return, find the allocation of each equity
that minimize risk. As before, we’ll encode risk with volatility, or standard deviation
of historical daily returns.

We can visualize our risk and return for a given portfolio by using a scatter plot. Each
point represents a risk vs. return comparison for a particular stock in our portfolio.

Kudrayvtsev 68

MACHINE LEARNING FOR TRADING

We can find the weighted average of those comparisons by giving each stock a weight
relative to its allocation ratio.

Naturally, we can control the amount of risk in our portfolio by giving higher weights
to lower-risk stocks.

5.3.1 Covariance

Can we do better than just a weighted average of our portfolio? Can we have a
portfolio that has a lower risk than any individual asset in that portfolio? In other
words, could we achieve a portfolio that has a low risk and a high return, like the
orange dot on the right.

It seems far-fetched, but it turns out,
we can. We need to look at the covari-
ance of the portfolio rather than just
its individual components. The covari-
ance lets us analyze how different sets
of stocks move relative to each other
rather than all together as a whole
portfolio.

Consider three stocks, $ABC, $DEF,
and $GHI. Suppose that the former two
stocks move very similarly, almost in
lock-step. However, $GHI “zags” when
the others “zig,” meaning it moves the opposite way:

We can see that the correlation coefficient (or covariance) between $ABC and $DEF
is high, meaning they tend to move together, and vice-versa for $GHI. At the end of
the day, all three of these stocks return +10%, but what’s the best way to blend these
together and lower volatility?

Kudrayvtsev 69

CHAPTER 5: Beating the Market

By blending anti-correlated assets together, we can make our portfolio far smoother
than any individual asset would be on its own while still making the same +10%
gains overall.

5.3.2 Mean Variance Optimization

The idea boils down to a simple concept: blend anti-correlated assets together to
lower the overall variance of the portfolio. Of course, we still want to make money
over time, so long-term correlations of our blends should be positive while short-term
correlations are negative.

A number of algorithms grew out of this idea, one of which is mean variance opti-
mization or MVO. Our inputs are:

• an expected (predicted) return for each stock,

• volatility for each stock based on historic data,

• a covariance matrix showing the correlation between every pair of assets, and

• a target return that we want for our blended portfolio

The output is the set of weights for our assets that will minimize risk.

Wouldn’t it be nice if we went into the details of the MVO algorithm? Yeah, I
agree. I suppose you can refer to the original incomprehensible paper for more.

Kudrayvtsev 70

https://www.math.ust.hk/~maykwok/courses/ma362/07F/markowitz_JF.pdf

MACHINE LEARNING FOR TRADING

5.3.3 The Efficient Frontier

Since we are responsible for setting our target return as an input to MVO, we can
plot the resulting minimal risk for all of the various return levels. This renders the
following plot which defines the efficient frontier:

Notice the point of inflection on the left-hand side: the risk decreases to a minimum
and then returns. Obviously, we’d want to exclude that from any sort of portfolio as
there’s always a way to do better for that level of risk.

The frontier defines the optimal return for any level of risk; anything on the “inside”
of the frontier is suboptimal, inferior set of allocation ratios.

On a final note of interest, the line tangent to the efficient frontier and through the
origin defines the maximum Sharpe ratio for that set of assets:

Kudrayvtsev 71

PART III
Learning Algorithms for Trading

T he third part of this topic will cover applying machine learning algorithms
to financial data in order to create models that give us insights about stock
behavior. We can use these insights to (try to) predict future price data and

make trading decisions based on those predictions. Financial models have existed for
a long time, but using machine learning lets us create “data-centric models” in which
the evidence speaks for itself; there is no longer a need to subjectively interpret the
data.

Let’s talk about machine learning in broad terms at first, then get into specific tech-
niques and algorithms. What problem does machine learning solve? Well, given an
observation input X (like the last year’s daily returns of a stock, for example), we
can feed it into a model and get some output prediction Y (like the next set of daily
returns). The model, of course, is created from massive amounts of data fed into a
machine learning algorithm.

X −→ model −→ Y

Contents

6 Supervised Regression Learning 73
6.1 Regression . 74
6.2 Decision Trees . 77
6.3 Evaluating a Learning Algorithm . 80
6.4 Ensemble Learners . 83

7 Reinforcement Learning 86
7.1 Q-Learning . 88

Index of Terms 94

72

Supervised Regression Learning

T he first part of this chapter will focus on supervised regression learning:
supervised by a sequence of example predictions (xi, yi), we will learn a nu-
merical prediction (the regression, a poor naming choice). Some examples that

fall under this category of machine learning algorithms that we’ll be discussing soon
include linear regression, k-nearest neighbor (or kNN), decision trees, and decision
forests.

In terms of stock data, the most pertinent “prediction” is a future price. This allows
us to make decisions on top of that price data rather than restricting our model to
making strategy-specific decisions (like “Buy!”) directly.

Remember, we can have many feature vectors xi for a particular stock. Typically,
we have a pandas DataFrame for each feature in which each column is the data for
a particular stock and each row is the data at a specific point in time. When we
extend this to many features, we can think of it as a third dimension to our data in
which the “depth” is the feature number. What is our y, then? Well, as we’ve already
established, it will be price. Specifically, we can create an association between a
particular feature and a “future” price. We say “future” because we actually have
historical price data. So we could look at the Sharpe ratio for $IBM on January 1st

(this is our xi) and correlate it with its price on January 5th (this is our yi).

Figure 6.1: Our machine learning model associates a 3-dimensional array of
feature values for a variety of stocks with their (historically) “future” price data.

73

CHAPTER 6: Supervised Regression Learning

The “art” of model creation is picking these predictive factors—the more accurate
your resulting predictions, the more someone is probably willing to pay to use your
model.

Backtesting How accurate can these models really be? The stock market is a fickle
beast and some argue it runs more on emotion than reason. We need a way to test
the effectiveness of our model without losing tons of money in the process. This is
where backtesting comes in: we apply our model on a different period of time than
the one it was trained on and see how accurately its predictions match the actual
stock behavior.

This is somewhat akin to splitting the training data into a “training” and “test” set
that we’ll dive into further soon. Given a model based on a set of training data,
we can place a set of orders for a future point in time. We then use the historical
data to see how those orders would’ve performed, plotting the performance of our
fake portfolio over time (in terms of any of the statistics we learned about in Part I).
We can repeat this for as long as we have historical data for, seeing how our model
would’ve “really” performed over that period of time.

Figure 6.2: Describing the process of backtesting our model over historical price
data, plotting the results over time.

With a cursory overview out of the way, let’s dive into our first set of machine learning
methods that will make us teh big bux.

6.1 Regression

Don’t let the spooky term “regression” scare you: it’s just a numerical model. It
outputs a number (its prediction) based on a bunch of input numbers.

Kudrayvtsev 74

MACHINE LEARNING FOR TRADING

6.1.1 Linear Regression

Let’s take a look at a parametric method first. We’ve seen the concept of a parametric
model before: in Building Parameterized Models, we chose parameters to our line (m,
the slope, and b, the y-intercept from the familiar equation of a line, y = mx + b)
that best fit our data set. We defined “best fit” as minimizing the total vertical error
between the line and the points. This is called linear regression.

Figure 6.3: Using linear regression to fit a line to a data set mapping the
correlation between changes in barometric pressure and rainfall. Notice that a
higher-dimensional polynomial might have fit this data better, but this is the best
we could do with our model (a line).

Once we’ve found our best-fitting model parameters, calculating predictions is just
a matter of plugging our new input values into the model. We can throw the initial
data away. The problem, as you can see in Figure 6.3, is that the real world seldom
follows a linear model. Furthermore, it’s hard to say what degree of a polynomial
you’d need to best fit a model. It might be better to let the data speak for itself,
which would lead us to. . .

6.1.2 k-Nearest Neighbor

This data-centric approach (called an instance method, in contrast with the para-
metric method earlier) uses instances of the data points to create an approximate
prediction based on the distance of a novel input to 1, 2, or k of its nearest neighbors
in the data. In k-nearest neighbor, we just take the mean of the y values. This
method actually works surprisingly well for k > 1, but isn’t always ideal because it
requires storing the data which might have many dimensions and take up a lot of
space.

If we actually take the weighted mean of the y values based on the distance of the
neighbors to the new input, that’s actually called kernel regression.

Kudrayvtsev 75

CHAPTER 6: Supervised Regression Learning

Example 6.1: Choosing an Approach

How should we decide when a parametric approach like linear regression
should be preferred to a situation over an instance or data-centric approach
like kNN?

Suppose we have two situations we’d like to have a model for:

• A projectile is fired from a cannonball, and we’d like to predict where
it lands. Our observable is θ, the angle of the cannon, and its landing
point.

• A hive of honey bees is attracted to a food source; we’d like to predict
how many bees will go to a particular food source given its richness.
Our observable data is n, the number of bees, and a food “richness”
metric.

To which of these should we apply a parametric model? A non-parametric
model?

Answer:Thecannonwouldprobablyuseaparametricmodel,whereasthebees
wouldbebettermodeledinaninstance-basedway.

Generally speaking, the more well-defined a problem is, the more applicable
a mathematical model might be, meaning a parametric approach is more
suitable. We don’t really have much “mathematical bee theory,” so crafting
a model based on the things we see is much more applicable.

6.1.3 Training vs. Testing

We have a limited amount of historical stock data to work with, right? But we need to
evaluate our model without risking real money. Thus, we need to split our data into
training data—which is fed into the algorithm to create the model—and testing
data—which we use to evaluate the quality of our model before taking out a 2nd

mortgage on our house.

Kudrayvtsev 76

MACHINE LEARNING FOR TRADING

An important caveat of train-test splitting in historical price data that doesn’t nec-
essarily apply to other applications of machine learning algorithms is that we want
training data to always be earlier in time than testing data.

6.1.4 Problems with Regression

Obviously if this was a perfect solution we could call it here and become millionaires.
Unfortunately, reality is often disappointing. Regression is a noisy and uncertain
method. Furthermore, it’s challenging to estimate confidence in a model and reflect
that to the user in an understandable way (just showing the standard deviation is not
very reliable nor user-friendly). There are also challenges nested in the problem that
are specific to stocks: how long do you hold for?1 How do you optimize allocation
ratios?

6.2 Decision Trees

Quinlan, ‘86We’ll open our discussion of machine learning algorithms with decision trees. What
is a decision tree? It’s fairly self-explanatory: it’s a tree that maps various choices
to diverging paths that end with some decision. For example, one can imagine the
“intelligence” behind the famous “character guessing” AI Akinator: for each yes-or-
no question it asks, there are branches the answers that lead down a tree of further
questions until it can make a confident guess.

One could imagine the following (incredibly oversimplified) tree in Akinator’s “brain:”

1 Remember, you pay lower taxes on your capital gains (i.e. profits from stocks) if you hold them
for over a year! This kind of calculation is important to keep in mind when analyzing a strategy
or model.

Kudrayvtsev 77

https://link.springer.com/content/pdf/10.1007/BF00116251.pdf
https://en.akinator.com/

CHAPTER 6: Supervised Regression Learning

Does your character really exist?

No

Is your characteran animal?

No

Is your character’sgender female?

No

. . .

Yes

Turanga Leela

Yes

Pumba

Yes

Does your character play a sport?

No

. . .

Yes

Steph Curry

Except Akinator has played (and thus improved upon and expanded its decision tree)
about 400 million games as of this writing.

In most applications of decision trees—especially with respect to financial algorithms—
the branches are based on numeric boundaries in a particular feature. For example,
we might decide to invest (or not invest) in a particular stock if its Sharpe ratio is
above 0.5. Or, to branch further, we might only invest if S > 0.5 and its daily returns
are above 1%. We’d say that x1 is the “feature vector” for Sharpe ratio (one element
for each stock we’re choosing from) and x2 is the feature vector for its daily returns:

x1

≤ 0.5

No

> 0.5

x2

≤ 0.01

No

> 0.01

Yes

Note that a feature can (and likely will) appear more than once in a decision tree.
Similarly, some features may be completely disregarded when making a decision for
a particular input value depending on the path it takes. Consider the table:

x1 x2
$JPM 1 0.10

$AAPL 0.2 0.07
$SPY 0.7 -0.04

Which stocks would we invest in based on our decision tree above? Probably just
$JPM.

Kudrayvtsev 78

MACHINE LEARNING FOR TRADING

Coming to a conclusion given a decision tree seems pretty straightforward. The hard
part is creating the tree. If we’re given a set of data like the table above with an
additional column describing what our choice should be, how do we find the best
tree? How do we choose the feature to split our tree along? What values do we split
a particular feature along? Etc.

6.2.1 Representing a Decision Tree

Before we dive into this topic, let’s discuss the data structure itself. There are two
main approaches: an object-oriented approach that many of you are probably familiar
with in which there are Node objects that point to each other, and a matrix-based
approach in which each row represents a node.

The matrix representation is more compact and more efficient to process, so let’s go
over it first. Let’s continue with our running example of the buy/don’t-buy decision
tree and the feature vectors in the table above. Each row represents a node in the
tree; the columns are the factor, the splitting value, and the left and right node that
follow. For “special” (i.e. leaf) nodes, the splitting value is actually the decision value,
and the factor is −1 to indicate that it’s a leaf. For the above, it’d look something
like:

Index Factor Split Value Left Right
0 1 0.5 1 4
1 2 0.01 2 2
2 -1 Yes
3 -1 No
4 -1 No

For a given input, say x =
[
1, 0.10

]
(corresponding to $JPM), we’d first check the

root (i.e. index = 0) and see that it corresponds to the left value since we “pass” the
split value2. The next node is at index = 1; the input likewise “passes” and we move
on to index = 2, which is a leaf node that says “Yes, buy!”

6.2.2 Learning a Decision Tree

Let’s talk about “learning” a decision tree now. The algorithm for recursively building
the tree is defined in Snippet 6.1. The important point of variation that differentiates
various classes of decision trees is the algorithm that determines the “best feature” to
split on.

A tradition decision tree would choose to split on the feature with the highest cor-
relation (see numpy.corrcoef) with the prediction vector y. On the other hand, a
random decision tree will simply, as the name implies, split on a random feature.

2 We arbitrarily decide that (xi > split) corresponds to the left index; this is just a matter of
convention.

Kudrayvtsev 79

https://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html

CHAPTER 6: Supervised Regression Learning

Suprisingly, this yields results on-par with a more sophisticated splitting algorithm if
enough random trees are assembled into an Ensemble Learners.

Snippet 6.1: The process for building a tree based on an undefined “best feature”
algorithm which could use cross-correlation, random choices, or other techniques.

def build_tree(data):
if data.shape[0] == 1:
return [leaf, data.y, NA, NA]

if all data.ysame:
return [leaf, data.y, NA, NA]

determine best feature i to split
onSplitVal= data[:,i].median()

lefttree = build_tree(data[data[:,i] <= SplitVal])
righttree = build_tree(data[data[:,i] > SplitVal])
root = [i, SplitVal, 1, lefttree.shape[0] + 1]

return append(root, lefttree, righttree)

6.3 Evaluating a Learning Algorithm

We need a way to measure the effectiveness of machine learning algorithms besides
relying on training vs. testing data.

We can compare performance of various versions of model using a number of metrics
we’ll discuss shortly by modifying its configurable parameters. For example, in the
k-nearest neighbor modeling method, our parameter is k, the number of neighbors to
average. Variations in k are demonstrated in Figure 6.4: as k decreases, the model
gets closer and closer to overfitting the data set.

Figure 6.4: As k varies, so does the resulting kNN model fit. With k = N (left), where
N is the total number of data points, we can see that the model is just a flat line that is
the average of the data’s y values. With k = 3 (middle), we can see a tighter relationship
to each point with sharp drop-offs as points go in and out of the kNN averaging “bubble.”
With k = 1 (right), we see intense overfitting with the model corresponding directly to
the data.

What about a polynomial fitting model (such as numpy.polyfit), in which we can
vary d, the dimensionality of the polynomial?3 We can see the effect of varying d in
3 For example, for d = 3 we would have a model in the form y = m1x+m2x

2 +m3x
3 + b.

Kudrayvtsev 80

https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html

MACHINE LEARNING FOR TRADING

Figure 6.5: as d increases, the model fits the given training data better and better.
We need to likewise be careful not to overfit. Notice, as well, that with a polynomial
or parametric model, we can see the model’s predictions beyond the domain of the
training data: we can extrapolate and still predict (though likely unaccurately) at
the tails.

Figure 6.5: As d varies, so does the polynomial model’s fit. With d = 1 (a line, left),
we have basic linear regression; the model fits most points equally poorly and some points
well. With d = 2 (middle), we can see more points closer to the model, but there are still a
significant amount of outliers. With d = 3 (right), we see a closer fit to the model’s shape
given the training data, however it may be overfitting to the data we have.

6.3.1 Metrics

With an understanding of how models behave under certain parameter changes, we
can now compare them against each other with error metrics.

RMS Error

Our first method is root-mean-squared error, or RMS error. This is a metric of
the average “vertical” error of the data points to the model. At every data point
(x, y), we can evaluate what the model f would’ve predicted, giving us (x, f(x)); the
error of the model at that point is f(x)− x. The RMS is then:

E =

√∑
(Ytest − Ypredict)2

N
(6.1)

Correlation

Another way to visualize and evaluate the accuracy of a regression algorithm is to look
at the relationship between predicted and actual values on our dependent variable, y.

We fed our Xtest data into our model and got a series of predictions, ypredict. A
good model would have a tight correlation to the true y values (easily measured by
numpy.corrcoef): correlation value near +1 indicates a strong positive correlation,

Kudrayvtsev 81

https://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html

CHAPTER 6: Supervised Regression Learning

Figure 6.6: A visual explanation of the RMS error metric.

−1 a strong negative correlation, and near 0 a weak correlation.4

6.3.2 Overfitting

We’ve mentioned overfitting several times already, but haven’t explicitly defined what
it means. Now that we have metrics for error, we can. Overfitting occurs when the
error of our training data (or “in-sample error”) decreases while at the same time the
error of our testing data (or “out-of-sample error”) increases.

4 Note that the correlation isn’t a measure of the slope of the line plotted between ypredict and ytest,
but rather a measure of the “tightness” of the oval that bounds the points. More specifically, it can
be thought of intuitively as a measure of the major and minor axes on the data’s bounding ellipse,
a concept tightly tied to principal components and the covariance matrix. This, unfortunately,
disagrees with ya boi Khan in his video on the correlation coefficient, but I think a graduate school
professor might be more trustworthy here?

Kudrayvtsev 82

https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Covariance_matrix
https://www.khanacademy.org/math/ap-statistics/bivariate-data-ap/correlation-coefficient-r/v/calculating-correlation-coefficient-r

MACHINE LEARNING FOR TRADING

Figure 6.7: A visual explanation of overfitting: in-sample error decreases while
out-of-sample error increases.

6.3.3 Cross-Validation

We’ve already discussed splitting our data into training and testing sets: the model
is trained on the training data and evaluated on the testing data. We can use cross
validation to generate “more” data sets from our single data set. For example, we
could split our data into 5 equal parts. In one trial, we train on the first four parts
and test on the last part; in another trial, we might train on the first two and last
two parts and test on the third part. In this way, we can create many more trials and
evaluations of our model from a single data set.

Unfortunately, cross validation in this simple form doesn’t fit financial data very well.
By allowing a training set occur after (as in, later in time) the testing set, we let our
model “peek into the future,” creating a far better prediction for the past than should
be possible. Thus, we must specify a constraint of only allowing test data to occur
later in time than training data; this is roll forward cross validation. We can still
create multiple trials by “rolling” our data forward: we could use the first 10% of the
data as training and 10% as testing, then that same testing 10% as training and the
following 10% as testing, and so on.

6.4 Ensemble Learners

It’s possible to combine a group of weaker learners together into an ensemble, ulti-
mately creating a stronger learning algorithm that outperforms each of its parts. We
can then take the mean or a carefully calibrated linear combination of the ensemble’s
predictions into our final prediction.

Kudrayvtsev 83

CHAPTER 6: Supervised Regression Learning

Ensemble learners often have lower error and less overfitting problems than an in-
dividual learner on its own. A single learner typically has some sort of bias—linear
regression, for example, is biased towards making linear predictions—but a combina-
tion of biases effectively can cancel each other out.

6.4.1 Bootstrap Aggregating

Instead of combining different types of learners into an ensemble, we can also have
multiple learners of the same type that were trained on different subsets of our data
set. This technique is called bootstrap aggregating, or bagging. For each of our m
models, we choose n′ samples from our n-sized training data set (with replacement),
where typically n′ ≤ 0.6n. Each of these “bags” of data is fed into a model, then the
resulting prediction is the average of the m predictions.

Kudrayvtsev 84

MACHINE LEARNING FOR TRADING

6.4.2 Boosting

Not all of the learners in our ensemble are created equal—some will perform worse
than others. Ideally, we would minimize the effect of weaker learners on the overall
prediction. Furthermore, we can determine which parts of our training data is not
predicted correctly by a learner and try to make the next learner fit that data better.
This is the rationale behind boosting.5

We train our first model exactly like in bagging: take a random subset of the training
data and create a model. Then, we test the training data on the model and identify
which samples are predicted incorrectly. We weigh these samples higher in the training
data set: the next model, when sampling, is more likely to train on the higher-
weighted samples. We repeat this weight adjustment every time for the incorrect
samples (restoring the correct ones to their normalized weight) and similarly take the
mean for our final prediction on new data.

Note that as m, our number of models in the ensemble, increases, boosting meth-
ods typically overfit more than bagging methods. This is because boosting methods
increasingly tries harder and harder to fit data that has been predicted incorrectly,
and thus is creating a model catered more towards the training set than what is
representative of the overall set.

5 You can read about the specifics of a popular boosting algorithm: AdaBoost (adaptive boosting)
on Wikipedia or in my notes on Computer Vision which also touches on this topic.

Kudrayvtsev 85

https://en.wikipedia.org/wiki/Adaboost
https://georgek.dev/assets/cv-notes.pdf#algocf.11.1

Reinforcement Learning

O ur strategies and algorithms have been catered towards forecasting price data
based on historical data. However, that’s not enough, right? We need to be
able to make informed decisions based on that price data, ideally automatically.

That is the goal of reinforcement learning and what this chapter is all about.

Reinforcement learning algorithms come up
with policies that specify which actions to take
to reach a particular goal. They’re broken down
into three main parts: sensing, thinking, and
acting. RL is often discussed in the context of
robotics but it parallels to many other problems.
The environment can be described by a partic-
ular state, S. An action by the agent, a, is fed
into a transition function, T , which describes
how the environment responds to the action;
this cycle continues until the end of time.

An agent has a policy, Π(S), which describes
its decision-making process of converting envi-
ronment statement into an action. This policy
(and resulting action) is often computed with
the goal of maximizing a reward, r. The reinforcement learning algorithm learns
which actions maximize the reward and uses that to enforce a policy.

We need to model trading as a reinforcement problem. Much of the things we’ve
discussed thus far can be associated with a state, action, or reward in the RL system.
For example, buying and selling are clearly actions; Bollinger bands and trading
strategies (like holding long or selling short) are state; and returns from trades are
rewards. Some thing can be a little more ambiguous, though: daily returns can be
considered as both state and the reward, depending on the trading approach. We will
learn our policy by analyzing how the actions we take (buying and selling) affect our
portfolio value and various returns.

The system we’ve been discussing is well-known as a Markov decision problem,

86

MACHINE LEARNING FOR TRADING

or MDP. An MDP can be defined as a system with:

• a set of states, S;

• a set of actions, A;

• a transition function, T [s, a, s′]; and

• a reward function, R[s, a].

The transition function is a probability distribution: the sum of all possible “next
state”s must be 1. We want to find a policy, Π(s), that will maximize our reward.
We call this the optimal policy, denoted Π∗(s). There are two algorithms that can help
us find this optimal policy: policy iteration and value iteration. Unfortunately,
though, we won’t know T or R in advance and so these algorithms can’t help us
directly.

In a sense, our agent needs to learn about the available transitions as well as what
a good reward is before it can tackle doing that optimally. We can think about
our agent’s “life” as a series of experience tuples which are much like the individual
samples of training data we received during supervised regression learning:

〈s1, a1, s′1, r1〉
〈s2, a2, s′2, r2〉
〈s3, . . .〉

...

We are saying that we took action a1 while in the state s1; that led us to the new
state s′1 and we received the reward r1. We call that new state s2, now, and repeat
the process which led to s′2 (a.k.a. s3), and so on. . .

Given enough of this data, we can actually construct a probability distribution which
is an approximation of the world based on what we’ve observed, and then treat that
as our T and R for policy/value iteration. This is called model-based learning.
In contrast, model-free learning methods develop policies directly by looking at
the data rather than by converting them to what essentially amounts to a tabular
lookup. We’ll specifically be looking at Q-learning, a well-known model-free learning
algorithm.

Our concept of “maximizing the reward” is fairly vague; we can define it more rig-
orously. Suppose we have a robot that can navigate a maze, where each step has a
particular cost (i.e. a negative reward):

Kudrayvtsev 87

CHAPTER 7: Reinforcement Learning

The $1m cell is one-time use, whereas the $1 cell can be hit over and over for infinite
returns. What would be the optimal strategy? To a human, it’s obvious: get the $1m
then get the $1 over and over. The cost incurred by reaching the $1m cell (−14 to
get there and back) is insignificant.

This strategy hinges on a pretty important assumption, though: we can take (at least)
15 steps. More accurately, we probably assumed that we could take infinite steps;
this is called an infinite horizon:

∑∞
i=1 ri. If we wanted to optimize our reward over

3 steps (a finite horizon), things would be much different:
∑3

i=1 ri.

Much like when we discussed intrinsic value and discount rate, a dollar now is worth
more than a dollar later; likewise, a reward sooner is better than a reward later
and we should factor that into our optimization target. We typically call this factor
γ ∈ (0, 1.0] and it causes our reward to decay over time:

∞∑
i=1

γi−1ri

This has the convenience of converging cleanly as well as being more representative of
the real-world; γ is like an interest rate on the reward that lets the learning algorithm
prefer instant gratification over “potential” gains in the future.

7.1 Q-Learning

Recall that Q-learning is a model-free learning method that will glean information
about the real-world as it interacts with it, iteratively deducing the properties of T
(the transition function) and R (the reward function). The beauty of Q-learning is
that it’s guaranteed to provide an optimal policy.

The name “Q-learning” comes from the fact that the method relies on a function
Q[s, a] which represents as a 2D table for states and actions that grows as our agent
interacts with the world. The value in the table is the total reward for taking

Kudrayvtsev 88

MACHINE LEARNING FOR TRADING

action a while in the state s which is composed of the immediate reward and the total
discounted reward for future actions.

For now, suppose we fully know Q for our state space. What can we do with that?
We can craft a policy Π(s) which is just whatever action maximizes Q given our state:

Π(s) = arg max
a

Q[s, a]

Eventually, given enough observations, we converge to the optimal policy Π∗(s) and
our full table Q∗. Now let’s figure out how to train our agent and build Q.

7.1.1 Training a Q-Learner

At a high level, we will first split our data into training and testing data as we’ve
done with our other machine learning methods, then iterate over time and integrate
our experience tuples 〈s, a, s′, r〉 into our policy Π until we converge to Π∗(s).

“Converging” means we’ve reached a point at which the policy doesn’t perform any
better on the test data given more experience tuples. The iteration process can be
further broken down as follows:

• We choose a “start time” and initialize Q to some default state. This is usually
done by initializing the Q table to small random numbers.

• We compute s and select a given our policy, a = Π(s). In other words, we
consult Q to find the best action given the current state.

• We observe the reward r and subsequent state s′ from the world.

• We use that information to update and improve Q[s, a].

Let’s look at the learning procedure in further detail.

Kudrayvtsev 89

CHAPTER 7: Reinforcement Learning

A Learning Step

Given an experience tuple, 〈s, a, s′, r〉, how do we update our Q table? We introduce
a scalar α that represents our learning rate which is a metric of how much we “trust”
new information. Without this, we would expect our q-values1 to flail wildly with
each observation; with it, our values adjust more smoothly and eventually converge.
A typical value for the learning rate is α ≈ 0.20.

Updating our Q table is a matter of integrating our improved estimate with our old
estimate:

Q′[s, a] = (1− α)Q[s, a] + α · improved estimate

This begs the question: what’s the improved estimate? Well as we’ve already dis-
cussed, it’s our immediate reward and our discounted future rewards:

Q′[s, a] = (1− α)Q[s, a] + α(r + γ · later rewards)

But what are our discounted future rewards? We haven’t seen the future yet! But
we can. If we assume that we will behave optimally from this point forward, we can
say that our future reward is the q-value of the best action we would’ve chosen from
our new state, s′:

Q′[s, a] = (1− α)Q[s, a] + α

r + γ ·Q
[
s′, arg max

a′
(Q[s′, a′])

]
︸ ︷︷ ︸


Again, the underbraced part is the q-value of the best action a′ from our new state
s′.

Exploration

The more of our state space we explore, the more likely we are
to hone in on the optimal actions to take. If we get one single
observation that tells us a state change from s1

a−→ s2 is
really really good (by accident), the learner has no incentive
to ever try another action when in the state s1.

To alleviate this pitfall, we can introduce the probability
of choosing a random action regardless of the best action.
Naturally, we want this probability to decrease over time as
we converge on the optimal policy, so we additionally need a decay rate.

1 Here, we use q to signify a specific value in the Q table, so q = Q[s, a] for some s, a.

Kudrayvtsev 90

MACHINE LEARNING FOR TRADING

7.1.2 Trading as an MDP

Breaking down trading on the stock market into the elements of a Markov decision
process is fairly straightforward:

• Actions: buy, sell, or do nothing.

• Rewards: profit (or loss). More generally, we can use daily returns as our
reward at each timestep (a day).

• State: this one is tougher. We don’t want something like price in our state
since that doesn’t generalize well to a learning model that can be applied to
many different stocks. Instead, we should prefer relative values. Things like
price/SMA, Bollinger bands’ values, and P/E ratios all fall into this category.

Additionally, we should track state about how we’re interacting with the market.
Whether or not we’re holding a stock is obviously useful, and that very fact may
impact our decision-making. We may want to ride out a storm if we’re already
holding a stock, but buy any dip if we’re not holding yet, for example. Our
total return since entering a position is also useful if we have a particular target
profit in mind, for example.

Creating the State

In our formulas and discussion, we’ve been assuming that our state is just an integer.
However, clearly the state space we discussed above is far more complicated. We need
to take some steps to consolidate our factors into something that can be used as an
index to lookup a q value in our Q table.2

We need to discretize and combine each of our factors. Suppose we limit each of
our 4 example factors, x1, x2, x3, and x4 to the range [0, 9]. Then, we perform our
discretization and concatenate the numbers together into a single number:

A simple method of discretization is shown in Snippet 7.1. It has the benefit of
naturally scaling the thresholds to the densities of the dataset. Areas that have a lot

2 There absolutely are reinforcement learning algorithms that operate with robust state spaces and
don’t require these steps, but they’re unfortunately far beyond the scope of this class.

Kudrayvtsev 91

CHAPTER 7: Reinforcement Learning

of values get smaller thresholds whereas areas that are spread out get larger ones.

Snippet 7.1: A basic pseudocode algorithm for discretizing our learning factors
from arbitrary real numbers to fixed-range integers.

step_size = size(data) / steps
data.sort()
for i in range(0, steps):

threshold[i] = data[(i + 1) * stepsize]

7.1.3 Dyna-Q

Q-learning’s biggest limitation is that it requires many experience tuples (and thus
real-world steps) to converge. Given our context of trading on the stock market,
we’d probably burn through a lot of capital before we reach Π∗(s). To alleviate
this, we introduce the Dyna algorithm which will allow us to learn T and R by
“hallucinating” many interactions based on a single real-world interaction, expanding
our total number of experiences tuples without costing us big bucks.

Dyna-Q is a blend of model-based and model-free methods that builds on traditional
Q-learning. We leverage the expensive experiences we gained on real data to develop
a model, then use that model to simulate hundreds more experiences and make our
Q table even better. We can repeat this for all of our real experiences, essentially
using each real experience to bring back our model closer to reality.

Let’s look at these steps in more detail.

Hallucination

How do we create fake experiences based on the real world? As our model of T and R
gets better with real observations, our fake ones will get more and more representative

Kudrayvtsev 92

MACHINE LEARNING FOR TRADING

of the world.

We choose a random s and random a,3 then we infer the resulting state s′ from our
approximate transition model, so s′ = T [s, a]. Similarly, we infer our reward from our
approximate reward model, so r = R[s, a].

This begs the question, of course, of how we approximate T and R.4

Learning Transitions Recall that T [s, a, s′] represents the probability to land in
state s′ given that you took the action a from state s. To learn T , we simply observe
how often these transitions actually occur and count:

1. Initialize Tcount to some small number to avoid division by zero: Tcount = 1e−6.

2. For every experience with the real world, observe 〈s, a, s′〉.

3. Given experience, simply increment Tcount[s, a, s
′].

How do we use Tcount to then evaluate a transition probability of T [s, a, s′]? Just
divide the instance’s number of occurrences by the total:

T [s, a, s′] =
Tcount[s, a, s

′]∑
i∈S Tcount[s, a, i]

Where S is the set of all states we’ve observed when taking action a from state s.

Learning Rewards Recall that R[s, a] is the total (immediate and discounted fu-
ture) reward for taking the action a from state s. We are given the immediate reward
r as part of our experience tuple. To build our model, then, we simply discount old
rewards and integrate immedate ones (note that R = 0 to start):

R′[s, a] = (1− α)R[s, a] + αr

Where α is our learning rate (often something like 0.2) which quantifies our trust in
the new information.

3 Of course, the subset of available actions must be restricted to those available for the chosen s.
4 The specifics of these methods are Dr. Balch’s concoction for the course; they may not accurately
reflect Sutton’s implementation’s in his original paper.

Kudrayvtsev 93

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.6005&rep=rep1&type=pdf

Index of Terms

Symbols
k-nearest neighbor 73, 75, 80

A
arbitrage pricing theory 52
assets under management 23

B
backtesting . 74
bagging . 84
basis points . 16
bear . 22
bid-ask spread . 30
Bollinger bands 7, 55, 57, 86, 91
bond . 47
book value 47, 49, 50
boosting . 85
breadth . 65
bull . 22, 36
butterfly . 44

C
call option . 37
cap-weighted . 51
capital asset pricing model . . . 50, 62, 67
convex functions . 18
correlation 13, 69, 79, 81
covariance . 69
covered call . 43
cross validation . 83
cross validation, roll forward 83
cumulative returns 9, 26

D
daily returns 7, 10, 68, 86, 91
dark pool . 33

decision forests . 73
decision trees . 73, 77
discount rate . 48, 88
dividends 39, 46, 59, 60
Dyna . 92

E
efficient frontier . 71
efficient markets hypothesis 62
expense ratio . 24

F
feature . 78
finite horizon . 88
fundamental analysis 55

G
gradient descent . 17
Grinold’s fundamental law 64

H
histogram . 10

I
indicators . 55
infinite horizon . 88
information coefficient 65, 67
information ratio 65, 67
intrinsic value 40, 46, 48, 50, 60, 88

K
kernel regression . 75
kurtosis . 11

L
large-cap stock . 22
learning rate . 90

94

Index

linear regression 12, 73, 75, 84
liquid . 22

M
market capitalization 22, 47, 49–51
market porfolio . 50
Markov decision problem 86
Markov decision process 91
married put . 44
mean variance optimization 70
model-based learning 87
model-free learning 87, 88
momentum . 55, 57
moneyness . 39

N
normal distribution 11

O
options . 37
options chain . 37
order . 28
order book . 28, 29
overfit . 81
overfitting . 80, 82

P
policy iteration . 87
portfolio . 14, 50
portfolio management, active 51
portfolio management, passive 51
put option . 37

Q
Q-learning . 87, 88

R
random decision tree 79
rolling mean . 6
rolling standard deviation 6
root-mean-squared error 81

S
scatter plot 10, 12, 51, 68
sell short 25, 29, 36, 37, 41, 60, 86
Sharpe ratio 15, 20, 26, 66, 67, 71
simple moving average 57, 57
slope . 12, 51
stock split 59, 60, 61
strike price . 37
supervised regression learning 73, 87

T
technical analysis . 55
tick . 59
time decay . 40
time value . 40, 40
two and twenty . 24

V
value iteration . 87
volume . 22

W
writing options . 42

95

	Contents
	I Manipulating Financial Data
	Python for Finance
	Global Statistics
	Fixing Bad Data
	Graphing Financial Data
	Portfolios
	Optimizers

	II Computational Investing
	Hedge Funds
	Types of Managed Funds
	Compensation
	Attracting Investors
	Hedge Fund Computing Architecture

	The Order Book
	Making Orders
	Exchange-Traded Options

	Evaluating a Company
	Metrics for Evaluation
	Capital Asset Pricing Model
	Technical Analysis
	Anomalous Price Changes

	Beating the Market
	The Efficient Markets Hypothesis
	The Importance of Diversification
	Portfolio Optimization

	III Learning Algorithms for Trading
	Supervised Regression Learning
	Regression
	Decision Trees
	Evaluating a Learning Algorithm
	Ensemble Learners

	Reinforcement Learning
	Q-Learning

	Index of Terms

