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The only way to get through this course is by solving an
uncountably-infinite number of practice problems while fu-
eled by copious amounts of caffeine .

If you found these notes useful and are in a generous mood,
feel free to fuel my stimulant addiction: shoot me a do-
nation on Venmo @george_k_btw or PayPal kudrayvtsev@
sbcglobal.net with whatever this guide was worth to you.

Good luck, and happy studying!

W hy do we need to study algorithms, and why these specifically? The most im-
portant lesson that should come out of this course—one that is only mentioned

in Chapter 8 of Algorithms and the 4th lecture of the course—is that many problems
can be reduced to an algorithm taught here; they are considered the fundamental
algorithms in computer science, and if you know them inside-and-out, you can
often transform “novel” problems into a problem that can be solved by one of these
algorithms.

For example, a complicated problem like “can you make change for $X using coins in a
cash register” can be reduced to a Knapsack problem, a quest to “find the longest palin-
drome in a string” can be reduced to the finding the Longest Common Subsequence,
and the arbitrage problem of finding profitable currency trades on international ex-
changes can be reduced to finding negative-weight cycles via Shortest Paths.

Keep this in mind as you work through exercises.

1

mailto:george.k@gatech.edu


ku
dra

yv
tse

vI Notes 6

1 Dynamic Programming 8
1.1 Fibbing Our Way Along. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Recursive Relations . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Longest Increasing Subsequence . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Breaking Down Subproblems . . . . . . . . . . . . . . . . . . . 11
1.2.2 Algorithm & Runtime Analysis . . . . . . . . . . . . . . . . . 12

1.3 Longest Common Subsequence . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Step 1: Identify Subproblems . . . . . . . . . . . . . . . . . . 13
1.3.2 Step 2: Find the Recurrence . . . . . . . . . . . . . . . . . . . 14
1.3.3 Algorithm & Runtime Analysis . . . . . . . . . . . . . . . . . 15

1.4 Knapsack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.2 Optimal Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Knapsack With Repetition . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.1 Simple Extension . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.2 Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6.1 Subproblem Formulation . . . . . . . . . . . . . . . . . . . . . 20
1.6.2 Recurrence Relation . . . . . . . . . . . . . . . . . . . . . . . 21

2 Divide & Conquer 22
2.1 An Exercise in D&C: Multiplication . . . . . . . . . . . . . . . . . . . 22
2.2 Another Exercise in D&C: Median-Finding . . . . . . . . . . . . . . . 24
2.3 Solving Recurrence Relations . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Example 1: Integer Multiplication . . . . . . . . . . . . . . . . 26
2.3.2 Example 2: Better Integer Multiplication . . . . . . . . . . . . 28
2.3.3 General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Graphs 32
3.1 Common Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Depth-First Search . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Breadth-First Search . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Shortest Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 From One Vertex: Bellman-Ford . . . . . . . . . . . . . . . . . 34
3.2.2 From All Vertices: Floyd-Warshall . . . . . . . . . . . . . . . 35

3.3 Connected Components . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Undirected Graphs . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Directed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Acyclic Digraphs . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Strongly-Connected Components . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Finding SCCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2



ku
dra

yv
tse

v3.5 Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.1 Solving 2-SAT Problems . . . . . . . . . . . . . . . . . . . . . 43

3.6 Minimum Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.1 Greedy Approach: Kruskal’s Algorithm . . . . . . . . . . . . . 45
3.6.2 Graph Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.3 Prim’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7.1 Ford-Fulkerson Algorithm . . . . . . . . . . . . . . . . . . . . 50
3.7.2 Edmonds-Karp Algorithm . . . . . . . . . . . . . . . . . . . . 50
3.7.3 Variant: Flow with Demands . . . . . . . . . . . . . . . . . . 51

3.8 Minimum Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.8.1 Max-Flow = Min-Cut Theorem . . . . . . . . . . . . . . . . . 53
3.8.2 Application: Image Segmentation . . . . . . . . . . . . . . . . 56

4 Cryptography 60
4.1 Modular Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Modular Exponentiation . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.3 Fermat’s Little Theorem . . . . . . . . . . . . . . . . . . . . . 63
4.1.4 Euler’s Totient Function . . . . . . . . . . . . . . . . . . . . . 64

4.2 RSA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Generating Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.1 Primality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Linear Programming 69
5.1 2D Walkthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Key Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Standard Form . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.2 Example: Max-Flow as Linear Programming . . . . . . . . . . 72
5.2.3 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.4 Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.5 Invalid LPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Max SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Simple Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.1 ILP is np-Hard . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Computational Complexity 82
6.1 Search Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1 Example: SAT . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3



ku
dra

yv
tse

v6.1.2 Example: k-Coloring Problem . . . . . . . . . . . . . . . . . . 83
6.1.3 Example: MSTs . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.4 Example: Knapsack . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Differentiating Complexities . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.1 3SAT from SAT . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.2 Independent Sets . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.3 Cliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.4 Vertex Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.5 Subset Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Undecidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

II Additional Assignments 96

7 Homework #0 97
7.1 Problem 1: From Algorithms, Ch. 0 . . . . . . . . . . . . . . . . . . . 97
7.2 Problem 2: Big-Ordering . . . . . . . . . . . . . . . . . . . . . . . . . 98

8 Homework #1 100
8.1 Compare Growth Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.2 Geometric Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.3 Recurrence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9 Divide & Conquer (DPV Ch. 2) 104

10 Reductions (DPV Ch. 8) 107

III Exam Quick Reference 121

11 Exam 1 122

12 Exam 2 124

13 Exam 3 126

Index of Terms 129

4



ku
dra

yv
tse

vList of Algorithms

1.1 Fib1 (n), a naïve, recursive Fibonacci algorithm. . . . . . . . . . . . . 9
1.2 Fib2 (n), an improved, iterative Fibonacci algorithm. . . . . . . . . . . 9
1.3 LIS1 (S), an approach to finding the longest increasing subsequence in

a series using dynamic programming. . . . . . . . . . . . . . . . . . . . 12
1.4 LCS (S), an approach to finding the length of the longest common sub-

sequence in two series using dynamic programming. . . . . . . . . . . . 15
1.5 Knapsack(·), the standard knapsack algorithm with no object repe-

tition allowed, finding an optimal subset of values to fit in a capacity-
limited container. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 KnapsackRepeating(·), the generalized knapsack algorithm in which
unlimited object repetition is allowed, finding an optimal multiset of
values to fit in a capacity-limited container. . . . . . . . . . . . . . . . 19

1.7 Computes the cost of the best matrix multiplication order. . . . . . . . 21

3.1 Explore(G, v), a function for visiting vertices in a graph. . . . . . . . 33
3.2 DFS(G), depth-first search labeling of connected components. . . . . . 34
3.3 Kruskal(·), a greedy algorithm for finding the minimum spanning tree

of a graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 The Ford-Fulkerson algorithm for computing max-flow. . . . . . . . . . 51

4.1 ModExp(x, y,N), the recursive fast modular exponentiation algorithm. 61
4.2 Gcd(x, y), Euclid’s algorithm for finding the greatest common divisor. 62
4.3 Egcd(x, y), the extended Euclidean algorithm for finding both the

greatest common divisor and multiplicative inverses. . . . . . . . . . . 63

9.1 Removes duplicates from arrays in O(n log n) time. . . . . . . . . . . . 105

10.1 A way of relating search and optimization problems using binary search,
applied specifically to the TSP. . . . . . . . . . . . . . . . . . . . . . . 108

5



ku
dra

yv
tse

v
PART I
Notes

B efore we begin to dive into all things algorithmic, some things about formatting
are worth noting.

An item that is highlighted like this is a “term” that is cross-referenced wherever it’s
used. Cross-references to these vocabulary words are subtly highlighted like this and
link back to their first defined usage; most mentions are available in the Index.

Linky I also sometimes include margin notes like the one here (which just links back here)
that reference content sources so you can easily explore the concepts further.
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vDynamic Programming

T he dynamic programming (commonly abbreviated as DP to make undergrad-
uates giggle during lecture) problem-solving technique is a powerful approach to

creating efficient algorithms in scenarios that have a lot of repetitive data. The key
to leveraging dynamic programming involves approaching problems with a particular
mindset (paraphrased from Algorithms, pp. 158):

From the original problem, identify a collection of subproblems which share two
key properties: (a) the subproblems have a distinct ordering in how they should
be performed, and (b) subproblems should be related such that solving “earlier”
or “smaller” subproblems gives the solution to a larger one.

Keep this mindset in mind as we go through some examples.

1.1 Fibbing Our Way Along. . .

A classic toy example that we’ll start with to demonstrate the power of dynamic
programming is a series of increasingly-efficient algorithms to compute the Fibonacci
sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

In general, Fn = Fn−1 + Fn−2, with the exceptional base-case that Fn = n for n ≤
1. The simplest, most naïve algorithm (see algorithm 1.1) for calculating the nth
Fibonacci number just recurses on each Fm as needed.

Notice that each branch of the recursion tree operates independently despite them
doing almost identical work: we know that to calculate Fn−1 we need Fn−2, but we
are also calculating Fn−2 separately for its own sake. . . That’s a lot of extra work
that increases exponentially with n!

Wouldn’t it be better if we kept track of the Fibonacci numbers that we generated as
we went along? Enter Fib2(n), which no longer recurses down from Fn but instead

8
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Algorithm 1.1: Fib1 (n), a naïve, recursive Fibonacci algorithm.

Input: An integer n ≥ 0.
Result: Fn
if n ≤ 1 then

return n
end
return Fib1 (n− 1) + Fib1 (n− 2)

builds up to it, saving intermediate Fibonnaci numbers in an array:

Algorithm 1.2: Fib2 (n), an improved, iterative Fibonacci algorithm.

Input: An integer n ≥ 0.
Result: Fn
if n ≤ 1 then

return n
end
F := {0, 1}
foreach i ∈ [2, n] do
F [i] = F [i− 1] + F [i− 2]

end
return F [n]

The essence of dynamic programming lies in identifying the potential to implement
two main principles:

• avoid repetitive work and instead store it after computing it once. Identify-
ing the overlapping subproblems (like the fact that Fn−1 and Fn−2 share large
amounts of work) is a key part in developing a dynamic programming approach.
This means you should not shy away from high memory usage when imple-
menting a dynamic programming algorithm—the speed savings from caching
repeated intermediate results outweigh the “cost” of memory.

• avoid recursion and instead use an iterative approach. This point is actually
not universal when it comes to dynamic programming and pertains specifically
to our course. We could have likewise made algorithm 1.2 pass around an array
parameter to a recursive version; this would be an example of a memoization
technique.

Kudrayvtsev 9
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CHAPTER 1: Dynamic Programming

Memoization and recursion often go hand-in-hand when it comes to dynamic
programming solutions, but this class shies away from them. Some of the walk-
throughs may not, though, since it’s (in my opinion) an arbitrary restriction
that may make problems harder than they need to be.

1.1.1 Recursive Relations

Let’s look at algorithm 1.1 through a different lens and actually try to map out the
recursion tree as it develops.

Suppose we want to calculate F5. . . our algorithm would then try to calculate F4 and
F3 separately, which will try to calculate F3 and F2, and so on. . .

Fib1(5)

Fib1(3)

Fib1(1)

Fib1(0)

Fib1(2)

Fib1(0)Fib1(1)

Fib1(4)

Fib1(2)

Fib1(0)Fib1(1)

Fib1(3)

Fib1(1)

Fib1(0)

Fib1(2)

Fib1(0)Fib1(1)

Notice the absurd duplication of work that we avoided with Fib2(). . . Is there a way
we can represent the amount of work done when calling Fib2(n) in a compact way?

Suppose T (n) represents the running time of Fib1(n). Then, our running time is
similar to the algorithm itself. Since the base cases run in constant time and each
recursive case takes T (n− 1) and T (n− 2), respectively, we have:

T (n) ≤ O(1) + T (n− 1) + T (n− 2)

So T (n) ≥ Fn; that is, our running time takes at least as much time as the Fibonacci
number itself! So F50 will take 12,586,269,025 steps (that’s 12.5 billion) to calculate
with our naïve formula. . .

The Golden Ratio

Interestingly enough, the Fibonacci numbers grow exponentially in ϕ, the
golden ratio, which is an interesting mathematical phenomenon that oc-
curs often in nature.

Kudrayvtsev 10
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The golden ratio is an irrational number:

ϕ =
1 +
√

5

2
≈ 1.6180 . . .

and the Fibonacci numbers increase exponentially by approximately
ϕn√

5
.

1.2 Longest Increasing Subsequence

A common, more-practical example to demonstrate the power of dynamic program-
ming is finding the longest increasing subsequence in a series.

Definitions

A series is just a list of numbers:

5, 7, 4,−3, 9, 1, 10, 4, 5, 8, 9, 3

A subsequence is a set of numbers from a series that is still in order (but
is not necessarily consecutive):

4, 1, 4, 9

What we’re looking for in a longest-increasing-subsequence (or LIS) algorithm is the
longest set of ascending numbers that are still in order relative to the original series.
For our example series above, that would be the subsequence:

−3, 1, 4, 5, 8, 9

To start off a little simpler, we’ll just be trying to find the length, so we’d want our
algorithm to output “6.” Formally,

Longest Increasing Subsequence:

Input: A series of numbers, S = {x1, x2, . . . , xi}.

Output: The length ` of the subsequence S ′ ⊆ S such that the elements
of S ′ are in increasing (ascending) order.

1.2.1 Breaking Down Subproblems

Let’s start by doing the first thing necessary for all dynamic programming problems:
identify shared work. Suppose our sequence was one element shorter:

5, 7, 4,−3, 9, 1, 10, 4, 5, 8, 9

Kudrayvtsev 11
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Intuitively, wouldn’t everything we need to do stay almost the same? The only thing
that should matter is checking whether or not the new digit 3 can affect our longest
sequence in some way. And wouldn’t 3 only come into play for subsequences that are
currently smaller than 3?

That’s a good insight: at each step, we need to compare the new digit to the largest
element of all previous subsequences. And since we don’t need the subsequence itself,
we only need to keep track of its length and its maximum value. Note that we track
all previous subsequences, because the “best” one at a given point in time will not
necessarily be the best one at every point in time as the series grows.

What is a potential LIS’ maximum value? Well, naturally, the last element in the
subsequence is its maximum. So given a list of numbers: S = {x1, x2, . . . , xn}, we’ll
define our subproblem L(i) to be length of the longest increasing subsequence of x1..i
that, critically, includes xi itself.

Then, we can define the exact recurrence we just described above: at each “next”
step, we simply find the best LIS we can append xi to:

L(i) = 1 + max
1≤j<i

{L(j) | xj < xi}

1.2.2 Algorithm & Runtime Analysis

Algorithm 1.3: LIS1 (S), an approach to finding the longest increasing sub-
sequence in a series using dynamic programming.

Input: S = {x1, . . . , xn}, a series of numbers.
Result: L, the length of the LIS of S.
/* Initialize the LIS lengths to a baseline. */

L := 0

foreach xi ∈ S do
m := 1
foreach j ∈ [1, i) do /* find the best LIS to append to */

if xi > xj and L[j] ≥ m then
m = L[j]

end
end
L[i] = m+ 1

end
return max(L)

The running time of the algorithm is O(n2) due to the double for-loop over (up to)
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n elements each.

Let’s move on to another dynamic programming example.

1.3 Longest Common Subsequence

The list of characters that appear in the same relative order (possibly with gaps)
across two series is called a common subsequence. For example, given:

X = BCDBCDA

Y = ABECBAB

the LCS is BCBA:

X = B C D B CD A

Y = A B E C B A B

Longest Common Subsequence:

Input: Two equal-length strings:
X = {x1, x2, . . . , xn}
Y = {y1, y2, . . . , yn}

Output: The length ` of their longest common subsequence.

How can we solve the formal definition of this problem algorithmically?

1.3.1 Step 1: Identify Subproblems

Dynamic programming solutions are supposed to build upon themselves. Thus, we
may naturally expect our subproblems to just be increasingly-longer prefixes of the in-
put strings, just like in the LIS problem. For example, suppose we’re three characters
in and are analyzing an incoming 4th character:

X = BCD ← B = xi=4

Y = ABE ← C = yi=4

Notice that ` = 1 before and ` = 2 after, since we go from B to BC as our LCS. In
general, though, there are two cases to consider, right? Either xi = yi, in which case
we know for sure that ` increases since we can just append both characters to the
LCS, or xi 6= yi, in which case we need to think a little more.

It’s possible that either the new xi or the new yi makes a new LCS viable. We
can’t integrate them into the LCS at the same time (since they’re not equal), so let’s
suppose we only have a new yi so we can think about this concretely:

X = BCD

Kudrayvtsev 13
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Y = ABE ← C

Wait, what if we built upX character-by-character to identify where C fits into LCSs?
That is, we first compare C to X = B, then to X = BC, then to X = BCD, tracking
the length at each point in time? We’d need a list to track the best `:

B C D
C 0 1 1

Hmm, but what happens if there already was a C? Imagine we instead had X ′ =
BCC. By our logic, that’d result in the length table:

B C C
C 0 1 2

However, by the very nature of dynamic programming, we should be able to safely
assume that our previous subproblems always give accurate results. In other words,
we’d know that `1 = 1 because of the earlier y2 = B, so we can assume that our table
will automatically build up:

B C D
C 1 2 2

How would we know that, though? One idea would be to compare the new character
yi to all of the previous characters in X. Then, if xj = yi, we know that the LCS will
increase, so we’d increment `i. In other words,

`i = 1 + max
1≤j<i

{`j where xj = yi}

For our example, when we’re given y4 = C, we see that x2 = C, `2 = 1, so we set
`4 = 2.

1.3.2 Step 2: Find the Recurrence

Under this mindset, what’s our recurrence? We need to track `s for every character
in our string, and each new character might increment any of the j < i subsequences
before it. One might envision a matrix relating the characters of one string to the
other, filled out row-by-row with the LCS length at each index:

B C D B
A 0 0 0 0
B 1 1 1 1
E 1 1 1 1
C 1 2 2 2

With the introduction of each ith character, we need to compare to the previous
characters in the other string. We can’t evaluate both xi and yi simultaneously
(unless they’re equal), and so we say L(i, j) contains the LCS length for an i-length
X and a j-length Y .
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Then, the latest LCS length is based on whether or not the last characters match:

L(i, j) =

{
1 + L(i− 1, j − 1) if xi = yj

max (L(i− 1, j), L(i, j − 1)) otherwise

In other words, if the last characters match, we increment the LCS that would’ve
resulted without those letters (which is just the previous two strings). If they don’t,
we just consider the best LCS if we hadn’t used xi xor yj.

Our base case is trivial: L(0, ·) = L(·, 0) = 0. That is, when finding the LCS between
strings where one of them is the empty string, the length is obviously zero.

1.3.3 Algorithm & Runtime Analysis

Algorithm 1.4: LCS (S), an approach to finding the length of the longest
common subsequence in two series using dynamic programming.

Input: X = {x1, . . . , xn}, a series (numbers/letters).
Input: Y = {y1, . . . , ym}, another series.
Result: L, the length of the LCS of X and Y .
/* Initialize the LCS lengths to a baseline. */

Ln×m := {0}
foreach i ∈ [1, n] do

foreach j ∈ [1,m] do
if xi = yj then
L[i, j] = 1 + L[i− 1, j − 1]

else
L[i, j] = max [L[i, j − 1],L[i− 1, j]]

end
end

end
return L[n,m]

The running time of the algorithm is O(n2).

1.4 Knapsack

Another popular class of problems that can be tackled with dynamic programming
are known as knapsack problems. In general, they follow a formulation in which
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you must select the optimal objects from a list that “fit” under some criteria and also
maximize a value. More formally, a knapsack problem is structured as follows:

Knapsack:

Input: A set of n objects with values and weights:
V = {v1, v2, . . . , vn}
W = {w1, w2, . . . , wn}

A total capacity B.

Output: A subset S ⊆ {1, 2, . . . , n} that both:

(a) maximizes the total value:
∑
i∈S

vi

(b) while fitting in the knapsack:
∑
i∈S

wi ≤ B

There are two primary variants of the knapsack problem: in the first, there is only
one copy of each object, whereas in the other case, objects can be repeatedly added
to the knapsack without limit.

1.4.1 Greedy Algorithm

A natural approach to solving a problem like this might be to greedily grab the
highest-valued object every time. Unfortunately, this does not always maximize the
total value, and even simple examples can demonstrate this.

Suppose we’re given the following values:

V = {v1 = 15, v2 = 10, v3 = 8, v4 = 1}
W = {w1 = 15, w2 = 12, w3 = 10, w4 = 5}
B = 22

A greedy algorithm would sort the objects by their value-per-weight: ri viwi . In this
case (the objects are already ordered this way), it would take v1, then v4 (since after
taking on w1, w4 is the only one that can still fit). However, that only adds up to 16,
whereas the optimal solution should pick up v2 and v3, adding up to 18 and coming
in exactly at the weight limit.

1.4.2 Optimal Algorithm

As before, we” first define a subproblem in words, then try to express it as a recurrence
relation.
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Attempt #1

The easiest baseline to start with is by defining the subproblem as operating on a
smaller prefix of the input. Let’s define K(i) as being the maximum achievable using
a subset of objects up to i. Now, let’s try to express this as a recurrence.

What does our 1D table look like when working through the example above? Given

values: 15 10 8 1
weights: 15 12 10 5

We can work through and get K : 15 15 15 15 . On the first step, obviously
15 is better than nothing. On the second step, we can’t take both, so keeping 15
is preferred. On the third step, we can grab both v3 and v2, but notice that this
requires bigger knowledge than what was available in K(1) or K(2). We needed to
take a suboptimal solution in K(2) that gives us enough space to properly consider
object 3. . .

This tells us our subproblem definition was insufficient, and that we need to consider
suboptimal solutions as we build up.

Attempt #2

Let’s try a subproblem that tracks the (i − 1)th problem with a smaller capacity,
b ≤ B − wi. Now our subproblem tracks a 2D table K(i, b) that represents the
maximum value achievable using a subset of objects (up to i, as before), AND keeps
their total weight ≤ b. The solution is then lives at K(n,B).

Our recurrence relation then faces two scenarios: either we include vi in our knapsack
if there’s space for it AND it’s better than excluding it, or we don’t and keep the
knapsack the same. Thus,

K(i, b) =

max

{
vi +K(i− 1, b− wi)
K(i− 1, b)

if wi ≤ b

K(i− 1, b) otherwise

with the trivial base cases K(0, b) = K(i, 0) = 0, which is when we have no objects
and no knapsack, respectively. This algorithm is formalized in algorithm 1.5; its
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running time is very transparently O(nB).

Algorithm 1.5: Knapsack(·), the standard knapsack algorithm with no ob-
ject repetition allowed, finding an optimal subset of values to fit in a capacity-
limited container.

Input: List of object weights: W = {w1, . . . , wn}
Input: List of object values: V = {v1, . . . , vn}
Input: A capacity, B.
Result: The collection of objects resulting in the maximum total value without

exceeding the knapsack capacity.

// For the base cases, only the first row and column are required to

be zero, but we zero-init the whole thing for brevity.

Kn+1×B+1 ← 0
foreach i ∈ [1..n] do

foreach b ∈ [1..B] do
x = K[i− 1, b]
if wi ≤ b then

K[i, b] = max [x, vi + K[i− 1, b− wi]]
else

K[i, b] = x
end

end
end
return K(n,B)

1.5 Knapsack With Repetition

In this variant, we have an unlimited supply of objects: we can use an object as many
times as we’d like.

1.5.1 Simple Extension

Let’s try to solve this with the same formulation as before: let’s defineK(i, b) as being
the maximum value achievable using a multiset (that is, a set where duplicates are
allowed) of objects {1, . . . , i} with the weight ≤ b. Our resulting recurrence relation
is almost identical, but we don’t need to remove the object from our pool of viabilities
when considering smaller bags:

K(i, b) = max

{
K(i− 1, b)

vi +K(i, b− wi)
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1.5.2 Optimal Solution

Do we even need i—the variable we use to track the objects available to us—anymore?
Intuition says “no,” and we might actually be able to formulate an even better solution
because of it.

Since we’re never considering the object set, we only really need to define our subprob-
lem as an adjustment of the available capacity. Let’s define K(b) as the maximum
value achievable within the total weight ≤ b.

Now we need to consider all the possibilities of a last object, rather than restrict
ourselves to the ith one, and take the best one. The recurrence can then be expressed
as:

K(b) = max
i
{vi +K(b− wi) | 1 ≤ i ≤ n,wi ≤ b}

This is formalized in algorithm 1.6.

Algorithm 1.6: KnapsackRepeating(·), the generalized knapsack algo-
rithm in which unlimited object repetition is allowed, finding an optimal multiset
of values to fit in a capacity-limited container.

Input: List of object weights: W = {w1, . . . , wn}
Input: List of object values: V = {v1, . . . , vn}
Input: A capacity, B.
Result: The collection of objects (possibly with duplicates) resulting in the

maximum total value without exceeding the knapsack capacity.

K ← 0 // defines our 1D, B-element array, K.

foreach b ∈ [1..B] do
K(b) = 0
foreach wi ∈ W | wi ≤ b do

v ← vi +K(b− wi)
if v > K(b) then

K(b) = v
end

end
end
return K(B)
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1.6 Matrix Multiplication

Multiplying any two matrices, An×m and Bm×k, takes O(nmk) time; there’s no avoid-
ing this. However, anyone who has worked with matrices knows that the order in
which you multiply a chain of matrices can heavily impact performance. For exam-
ple, given a 2× 5 matrix A, a 5× 10 matrix B, and a 10× 2 matrix C as such:

D2×2 = (A2×5 ·B5×10)︸ ︷︷ ︸
2×10 result, 100 ops

· C10×2

takes 140 total ops, a bit more than the alternative order which takes 120 ops:

D2×2 = A2×5 · (B5×10 ·C10×2)︸ ︷︷ ︸
5×2 result, 100 ops

The set of ordering possibilities grows exponentially as the number of matrices in-
creases. Can we compute the best order efficiently?

To start off, envision a particular parenthesization as a binary tree, where the root is
the final product and the branches are particular matrix pairings:

D

C·

BA

vs.

D

A·

CB

Then, if we associate a cost with each node (the product of the matrix dimensions),
a cost for each possible tree bubbles up. Naturally, we want the tree with the lowest
cost.1 The dynamic programming solution comes from a key insight: for a root
node to be optimal, all of its subtrees must be optimal.

1.6.1 Subproblem Formulation

Let’s formally define our problem. If we have n matrices, A1,A2, . . . ,An, we can
define their sizes as being mi−1 ×mi, since the inner dimensions of a matrix product
must match. That is, the size of matrix A2 would be m1×m2. The cost of a arbitrary
product, AiAj, is then cij = mi−1mimj.

Now we can generalize the above binary tree’s structure: the subtree of the product
on the left will be A1A2 · · ·Ai while the subtree on the right will be Ai+1Ai+2 · · ·An.
Thus, an arbitrary subtree is a product defined by some range [j, k]: AjAj+1 · · ·Ak

which can be thought of as a “substring” of {1, 2, . . . , n}.
1 It should be fairly obvious how we compute cost. Multiplying two matrices, Wa×b and Yb×c,
takes O(abc) time. A single entry zij in the result is the dot product between the ith row of W
and the jth column of Y: zij =

∑b
k=0 (wik · ykj). This takes b operations and occurs ac times.
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AjAj+1 . . .Ak

Am+1Am+2 . . .AkAjAj+1 . . .Am

This indicates a subproblem with two indices: let M(i, j) be the minimum cost for
computing Ai . . .Aj. Then our solution will be at M(1, n). Obviously it’s a little
strange if j < i, so we’ll force j ≥ i and focus on building up the “upper triangle” of
the 2D array.

1.6.2 Recurrence Relation

Let’s formulate the base case for ourM(i, j). Unlike with the subproblems we’ve seen
before, M(1, j) doesn’t mean anything special. However, M(i, i) does: there are no
ops required to find Ai, so M(i, i) = 0.

To compute M(i, j), we need to consider the best point at which Ai . . .Aj can be
split, so choose the k that results in the best split:

M(i, j) = min
i≤k<j

[M(i, k)︸ ︷︷ ︸
left

subtree

+M(k + 1, j)︸ ︷︷ ︸
right

subtree

+mi−1mkmj︸ ︷︷ ︸
cost of new
product

]

Notice that each new cell depends on cells both below it and to the left of it, so the
array must be built from the diagonal outward for each off-diagonal (hence the weird
indexing in algorithm 1.7).

Computing the best value for a single cell takes O(n) time in the worst case and the
table has n2

2
cells to fill, so the overall complexity is O(n3) which, though large, is far

better than exponential time.

Algorithm 1.7: Computes the cost of the best matrix multiplication order.

Input: A set of sizes corresponding to matrix dimensions, [m1,m2, . . . ,mn].
Result: The lowest-cost matrix multiplication possible.

Mn×n ← ∅
M[i, i] = 0 ∀i ∈ [1, n]
foreach d ∈ [1, n− 1] do

foreach i ∈ [1, n− d] do
j ← i+ d
M[i, j] = min

i≤k<j
[M[i, k] + M[k + 1, j] +mi−1mkmj]

end
end
return M[1, n]
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It is the rule in war, if ten times the enemy’s strength, surround
them; if five times, attack them; if double, be able to divide them;
if equal, engage them; if fewer, defend against them; if weaker,
be able to avoid them.

— Sun Tzu, The Art of War

D ividing a problem into 2 or more parts and solving them individually to conquer
a problem is an extremely common and effective approach to problems beyond

computer science. If you were tasked with finding a name in a thick address book,
what would you do? You’d probably divide it in half, check to see if the letter you’re
looking for comes earlier or later, then check midway through that half, disregarding
the other half for the remainder of your search. This is exactly the motivation behind
binary search: given a sorted list of numbers, you can halve your search space
every time you compare to a value, taking O(log n) time rather than the naïve O(n)
approach of checking every number.

2.1 An Exercise in D&C: Multiplication

Consider the traditional approach to multiplication with decimal numbers that we
learned in grade school: for every digit, we multiply it with every other digit.

1 2 3 4
× 1 2 3

3 7 0 2
+ 2 4 6 8
+ 1 2 3 4

1 5 1 7 8 2

The process overall in O(n2). Can we do better? Let’s think about a simpler divide-
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and-conquer approach that leverages the fact that we can avoid certain multiplica-
tions.

Quick Maffs: Off-By-One

This minor digression gives us insight on how we can do better than ex-
pected when multiplying two complex numbers together. The underlying
assumption is that addition is cheaper than multiplication.a

We’re given two complex numbers: a+ bi and c+di. Their product, via the
FOIL approach we all learned in middle school, can be found as follows:

= (a + bi)(c + di)

= ac + adi + bci + bdi2

= (ac− bd) + (ad + bc)i

There are four independent multiplications here. The clever trick realized
by Gauss is that the latter sum can be computed without computing the
individual terms. The insight comes from the fact that ad + bc looks like
it comes from a FOIL just like the one we did: a, b on one side, d, c on the
other:

(a + b)(d + c) = ad + bc︸ ︷︷ ︸
what we want

+ ac + bd︸ ︷︷ ︸
what we have

Notice that these “extra” terms are already things we’ve computed! Thus,

ad + bc = (a + b)(d + c)− ac− bd

Thus, we only need three multiplications: ac, bd, and (a + b)(d + c). We
do need more additions, but we entered this derivation operating under the
assumption that this is okay. A similar insight will give us the ability to
multiply n-bit integers faster, as well.
a This is undeniably true, even on modern processors. On an Intel processor,
32-bit multiplication takes 6 CPU cycles while adding only takes 2.

We’re working with the n-bit integers x and y, and our goal is to compute z = xy.1
Divide-and-conquer often involves splitting the problem into two halves; can we do
that here? We can’t split xy, but we can split x and y themselves into two n/2-bit
halves:

x = xl xr

1 We’re operating under the assumption that we can’t perform these multiplications on a computer
using the hardware operators alone. Let’s suppose we’re working with massive n-bit integers,
where n is something like 1024 or more (like the ones common in cryptography).
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y = yl yr

The original x is a composition of its parts: x = 2n/2xl + xr (where the 2n/2 serves as
a shift to move xl into place), and likewise for y. Thus,

xy =
(
2
n/2xl + xr

) (
2
n/2yl + yr

)
= 2nxlyl + 2

n/2(xlyr + xryl) + xryr

This demonstrates a recursive way to calculate xy: it’s composed of 4 n/2-bit multipli-
cations. Of course, we’re still doing this in O(n2) time;2 there’s no improvement yet.
Can we now apply a similar trick as the one described in the earlier aside, though,
and instead solve three subproblems?

Beautifully, notice that xlyr + xryl can be composed from the other multplications:

(xl + xr)(yl + yr) = xlyr + xryl︸ ︷︷ ︸
what we want

+ xlyl + xryr︸ ︷︷ ︸
what we have

If we let A = xlyl, B = xryr, and C = (xl+xr)(yl+yr), then we only need to combine
three subproblems:

xy = 2nA+ 2
n/2(C − A−B) +B

which is O
(
n
√
3≈1.59

)
, better than before! Turns out, there is an even better D&C

approach that’ll let us find the solution in O(n log n) time—the fast Fourier trans-
form—but it will require a long foray into polynomials, complex numbers, and roots
of unity that we won’t get into right now.

2.2 Another Exercise in D&C: Median-Finding

Suppose you have an unsorted list of numbers, A = [a1, a2, . . . , an]. Can you find its
median value without needing to incur the O(n log n) expense of sorting it? Turns
out, you can. Let’s concretely define the median value as being the

⌈
n
2

⌉
th-smallest

number. It’ll actually be easier to solve a “harder” problem: finding the kth smallest
value in A.3

Naïvely, we could sort A then return the kth element, but let’s do better. Let’s choose
a pivot, p, and divide A into three sub-arrays: those less than p, those greater than
p, and those equal to p:

A<p, A=p, A>p

2 You can refer to Solving Recurrence Relations or apply the Master theorem directly: T (n) =

4T

(
2

n

)
+O

(
n2
)
.

3 Critically, it’s not the kth-smallest unique element, so ties are treated independently. That is, the
2nd smallest element of [1, 2, 1] would be 1.
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Now we know which sublist the element we’re looking for is in: if k < |A<p|, we know
it’s in there. Similarly, if |A<p| < k < |A<p| + |A=p|, we know it IS p. Finally, if
k > |A<p|+ |A=p|, then it’s in A>p.

Let’s look at a concrete example, we (randomly) choose p = 11 for:

A = [5, 2, 20, 17, 11, 13, 8, 9, 11]

Then,

A<p = [5, 2, 8, 9]

A=p = [11, 11]

A>p = [20, 17, 13]

If we’re looking for the (k ≤ 4)th-smallest element, we know it’s in the first sublist
and can recurse on that. If we’re looking for the (k > 6)th smallest element, then we
want the (k− 6)th-smallest element in the last sublist (to offset the 6 elements in the
two other lists we’re now ignoring).

Now the question is reduced to finding a good pivot point, p. If we always chose
the median, this would divide the array into two equal subarrays and an array of the
median values, so |A<p| ≈ |A>p|. That means we’d always at least halve our search
space every time, but we also need to do O(n) work to do the array-splitting; this
gives us an O(n) total running time, exactly what we’re looking for. However, this is
a bit of a chicken-and-egg problem: our original problem is searching for the median,
and now we’re saying if we knew the median we could efficiently find the median?
Great.

What if, instead, we could find a pivot that is close to the median (say, within ±25%
of it). Namely, if we look at a sorted version of A, that our pivot would lie within the
shaded region:

minA

n/4 3n/4

maxA

median

In the worst case, then the size of our subproblem will be 3n/4 of what it used to

be, so: T (n) = T

(
3n

4

)
+ O(n), which, magnificently, still solves to O(n). In fact,

any valid subproblem that’s smaller than the original will solve to O(n). We’ll keep
this notion of a good pivot as being within 1/4th of the median, but remember that
if we recurse on a subproblem that is at least one element smaller than the previous
problem, we’ll achieve linear time.

If we chose a pivot randomly, our probability of choosing a good pivot is 50%. The
ordering within the list doesn’t matter: exactly half of the elements make good pivots.
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We can check whether or not a chosen pivot is “good” in O(n) time since that’s what
splitting into subarrays means, and if it’s not a good p we can just choose another
one. Like with flipping a coin, the expectation of p being good is 2 “flips”4 (that is,
it’ll take two tries on average to find a good pivot). Thus, we can find a good pivot in
O(n) time on average (two tries of n-time each), and thus we can find the nth-smallest
element in O(n) on average since we have a good pivot. Finding the median is then
just specifying that we want to find the n

2
th-smallest element. �

2.3 Solving Recurrence Relations

Recall the typical form of a recurrence relation for divide-and-conquer problems:

T (n) = 2T
(n
b

)
+ f(n)

Here, n is the size of the input problem, a is the number of subproblems in the
recursion, b is the factor by which the subproblem size is reduced in each recursive
call, and f(n) is the complexity of any additional non-recursive processing.

Lesson 10: DC3 Consider the (recursive) merge sort algorithm. In it, we split our n-length array into
two halves and recurse into each, then perform a linear merge. Its recurrence relation
is thus:

T (n) = 2T
(n

2

)
+O(n)

It’s possible to go from any recursive relationship to its big-O complexity with ease.
For example, we can use the merge sort recurrence to derive the big-O of the algo-
rithm: O(n log n). Let’s see how to do this in the general case.

2.3.1 Example 1: Integer Multiplication

The brute force integer multiplication algorithm’s recurrence relation looks like this:

T (n) = 4T
(n

2

)
+O(n)

We can similarly derive that its time complexity is O(n2), but how? Let’s work
through it. To start off, let’s drop the O(n) term. From the definition of big-O, we
know there is some constant c that makes the following equivalent:

T (n) = 4T
(n

2

)
+O(n)

4 The expectation can be defined and solved recursively. If we say flipping “heads” makes a good
pivot, we obviously need at least one flip. Then, the chance of needing to flip again is 50%, and
we’ll again need to see the average flip-count to get heads, so Eh = 1 + 1

2Eh =⇒ Eh = 2.
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≤ 4T
(n

2

)
+ cn, where T (1) ≤ c

Now let’s substitute in our recurrence relation twice: once for T (n/2), then again for
the resulting T (n/4).

T (n) ≤ cn+ 4T
(n

2

)
≤ cn+ 4

[
c
(n

2

)
+ 4T

(n
4

)]
plug in T

(n
2

)

= cn

(
1 +

4

2

)
+ 42T

( n
22

)
rearrange and group

≤ cn

(
1 +

4

2

)
+ 42

[
4T
( n

23

)
+ c
( n

22

)]
plug in T

( n
22

)

≤ cn

(
1 +

(
4

2

)
+

(
4

2

)2
)

+ 43T
( n

23

)
rearrange and group,

again

Notice that we’re starting to see a geometric series form in the cn term, and that its
terms come from our original recurrence relation, 4T

(n
2

)
:

1 +
4

2
+

(
4

2

)2

+ . . .+

(
4

2

)n
+

The pattern is clear after two substitions; the general form for i subtitutions is:

T (n) ≤ cn

(
1 +

(
4

2

)
+

(
4

2

)2

+

(
4

2

)3

+ . . .

(
4

2

)i−1)
+ 4iT

( n
2i

)
But when do we stop? Well our base case is formed at T (1), so we stop when n

2i
= 1.

Thus, we stop at i = log2 n, giving us this expansion at the final iteration:

T (n) ≤ cn

(
1 +

(
4

2

)
+

(
4

2

)2

+ . . .+

(
4

2

)log2 n−1
)

+ 4log2 n · T (1)

We can simplify this expression. From the beginning, we defined c ≥ T (1), so we can
substitute that in accordingly and preserve the inequality:

T (n) ≤ cn︸︷︷︸
O(n)

(
1 +

(
4

2

)
+

(
4

2

)2

+ . . .+

(
4

2

)logn−1
)

︸ ︷︷ ︸
increasing geometric series

+ 4logn · c︸ ︷︷ ︸
O(n2)

Thankfully, we established in Geometric Growth that an increasing geometric series
with ratio r and k steps has a complexity of Θ(rk), meaning our series above has
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complexity:

O

(
1 +

(
4

2

)
+

(
4

2

)2

+ . . .+

(
4

2

)logn−1
)

= O

((
4

2

)logn
)

= O
(

4logn

2logn

)
= O

(
2log2 n · 2log2 n

n

)
recall that

xi · yi = (xy)i

= O
(n · n

n

)
remember,
blogb n = n

= O(n)

Thus, we ultimately have quadratic complexity, as expected:

T (n) = O(n) · O(n) +O
(
n2
)

= O
(
n2
)
�

Quick Maffs: Generalizing Complexity

One could argue that we got a little “lucky” earlier with how conveniently
we could convert 4logn = n2, since 4 is a power of two. Can we do this
generically with any base? How would we solve 3logn, for example?

Well, we can turn the 3 into something base-2 compatible by the definition
of a logarithm:

3logn =
(

2log 3
)logn

= 2log 3·logn
power rule:
xa

b
= xab

= 2log (nlog 3) log exponents:
c · logn = log(nc)

= nlog 3 d-d-d-drop the base!

This renders a generic formulation that can give us big-O complexity for
any exponential:

bloga n = nloga b (2.1)

2.3.2 Example 2: Better Integer Multiplication

Armed with our substitution and pattern-identification techniques as well as some
mathematical trickery up our sleeve, solving this recurrence relation should be much
faster:

T (n) = 3T
(n

2

)
+O(n)
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As before, we substitute and generalize:

T (n) ≤ cn+ 3T
(n

2

)
≤ cn

(
1 +

(
3

2

)
+

(
3

2

)2

+ . . .+

(
3

2

)i−1)
+ 3iT

( n
2i

)

Our last term is i = log2 n, as before, so we can again group each term by its com-
plexity:

T (n) ≤ cn︸︷︷︸
O(n)

(
1 +

(
3

2

)
+

(
3

2

)2

+ . . .+

(
3

2

)logn−1
)

︸ ︷︷ ︸
again, increasing: O

(
( 3
2)

logn
= 3logn

2logn
≈n0.585

)
+ 3lognT (1)︸ ︷︷ ︸
O(nlog 3≈1.585)

≈ O(n) · O
(
n0.585

)
+O

(
n1.585

)
≈ O

(
n1.585

)
2.3.3 General Form

If we know certain things about the structure of the recurrence relation, we can
actually arrive at the complexity by following a series of rules; no substitutions or
derivations necessary!

Given the general form of a recurrence relation, where a > 0, b > 1:

T (n) = 2T
(n
b

)
+O(n)

we have three general cases depending on the outcome of the geometric series after
expansion:

T (n) = cn

(
1 +

(a
b

)
+
(a
b

)2
+ . . .+

(a
b

)logb n−1)
︸ ︷︷ ︸+alogb n · T (1)

• If a > b, the series is dominated by the last term, so the overall complexity is
O
(
nlogb a

)
.

• If a = b, the series is just the sum of logb n−1 ones, which collapses to O(logb n),
making the overall complexity O(n logb n).

• If a < b, the series collapses to a constant, so the overall complexity is simply
O(n).

Of course, not every algorithm will have O(n) additional non-recursive work. The
general form uses O

(
nd
)
; this is the Master theorem for recurrence relations:
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Property 2.1. For the general case of of the recurrence relation,

T (n) = aT
(n
b

)
+O

(
nd
)

our case depends on the relationship between d and logb a.

T (n) =


O
(
nd
)

if d > logb a

O
(
nd log2 n

)
if d = logb a

O
(
nlogb a

)
if d < logb a

Memorize these rules into the deepest recesses of your mind (at least until the exam).

2.4 Fast Fourier Transform

Unfortunately, I don’t know enough about the fast Fourier transform to take good
notes; this section just acts as a quick-reference guide.

The nth roots of unity are defined as:

ω0
n, ω

1
n, . . . , ω

n−1
n

where

ωn = e
2πi
n

so, for example, the fourth element of the 8th roots of unity is ω4
8 =

(
e

2πi
8

)4
= eπi.

Notice that ωnn = ω0
n = 1.

The FFT takes in a list of k constants and specifies the nth roots of unity to use. It
outputs a list of evaluations of the polynomial defined by the constants. Namely, if
K = {c0, c1, c2, . . . , ck−1} defines:

A(x) = c0 + c1x+ c2x
2 + . . .+ ck−1x

k−1

Then the FFT of K with the nth roots of unity will return n evaluations of A(x):

(z1, z2, . . . , zn) = FFT(K, ωn)

The inverse fast Fourier transform just uses a scaled version of the FFT with the
inverse roots of unity:

IFFT(K, ωn) =
1

n
FFT(K, ω−1n )

where ω−1n is the value that makes ω−1n · ωn = 1. This is defined as ωn−1n :

ω−1n = ωn−1n = e
2πi(n−1)

n
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= e
2πin
n · e

−2πi
n distribute and split

= e2πi · e−
2πi
n cancel ns

= e−
2πi
n Euler’s identity: eπi = 1

Since ωn · ωn−1n = e
2πi
n · e− 2πi

n = e0 = 1.
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I fucking love graphs.

Definitions

There are many terms when discussing graphs and they all have very specific mean-
ings. This “glossary” serves as a convenient quick-reference.

The typical way a graph is defined is G = (V,E). Sometimes, the syntax
−→
G is used to

indicate a directed graph, where edges can only be traversed in a single direction.

• The syntax (a, b) ∈ E indicates an edge from a→ b within G.

• The syntax w(a, b) indicates the weight (or distance or length) of the edge
from a→ b.

• A walk through a graph can visit a vertex any number of times.

• A path through a graph can only visit a vertex once.

• A cycle is a path through a graph that starts and ends at the same node.

• A graph is fully-connected if each vertex is connected to every other vertex.
In this case, there are |E| = |V |2 edges.

• The degree of a vertex is the number of edges it has. For directed graphs, there
is also din(v) to indicate incoming edges (u, v) and dout(v) to indicate outgoing
edges (v, u).

When discussing the big-O complexity of a graph algorithm, typically n refers to |V |,
the number of vertices, and m refers to |E|, the number of edges. In a fully-connected
graph, then, a O(nm) algorithm can actually be said to take O(n3) time, for example.
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3.1 Common Algorithms

The Explore function described in algorithm 3.1 is important; it creates the building
block for almost any traversal algorithm. It traverses the graph by digging as deep as
possible of a path down a single vertex, then backtracking and traversing neighbors
until all nodes are searched.

The optional Previsit and Postvisit functions described in algorithm 3.1 allow
nodes to be processed as they’re traversed; the latter of these will be used heavily
soon.

Algorithm 3.1: Explore(G, v), a function for visiting vertices in a graph.

Input: G = (V,E), the graph itself.
Input: v ∈ V , a vertex from which to start exploring.
Input: Optionally, the functions Previsit(z) and Postvisit(z), which can do

additional processing on the first and last time a vertex z is visited.

Result: The global visited array (of length |V |) is marked with visited[u] = true
if the vertex u can be visited from v.

Result: The global prev array (also of length |V |) is marked with prev[z] = w,
where w is the first vertex to explore z.

visited[v] = true
Previsit(v) // optional

foreach edge (v, u) ∈ E do
if ¬visited[u] then

explore(G, u)
prev[u] = v

end
end
Postvisit(v) // optional

3.1.1 Depth-First Search

Performing depth-first search on an undirected graph (described in algorithm 3.2)
is just a simple way of leveraging Explore() (see algorithm 3.1) on all nodes.

3.1.2 Breadth-First Search

While depth-first search recursively explores nodes until it reaches leaves, breadth-
first search explores the graph layer by layer. Its output is different than that of

Kudrayvtsev 33



ku
dra

yv
tse

v
CHAPTER 3: Graphs

Algorithm 3.2: DFS(G), depth-first search labeling of connected components.

Input: G = (V,E), an undirected graph to traverse.

cc := 0
foreach v ∈ V do

visited[v] = false
prev[v] = ∅

end
foreach v ∈ V do

if ¬visited[v] then
cc += 1
explore(G, v)

end
end

DFS, which tells us about the connectivity of a graph. Breadth-first search (starting
from a vertex s) fills out a dist [·] array, which is the minimum number of edges from
s→ v, for all v ∈ V (or ∞ if there’s no path). It gives us shortest paths. Its running
time is likewise O(n+m).

3.2 Shortest Paths

First off, its worth reviewing Dijkstra’s algorithm (see Algorithms, pp. 109–112)
so that we can use it as a black box for building new graph algorithms. In summary,
it performs BFS on graphs with positively-weighted edges, outputting the length of
the shortest path from s ; v using a (binary) min-heap data structure. Its running
time is O((n+m) log n) with this construction.

3.2.1 From One Vertex: Bellman-Ford

In the subproblem definition, we condition on the number of edges used to build the
shortest path. Define D(i, z) as being the shortest path between a starting node s
and a final node z using exactly i edges.

D(i, z) = min
y:(y,z)∈E

{D(i− 1, y) + w(y, z)}
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But what if we can get from s → z without needing exactly i edges? We’d need to
find min

j≤i
D(j, z), right? Instead, we can incorporate it into the recurrence directly:

D(i, z) = min

D(i− 1, z)

min
y:(y,z)∈E

{D(i− 1, y) + w(y, z)} iterate over every edge
that goes into z

where we start with the base cases D(0, s) = 0, and D(0, z) = ∞ for all z 6= s, and
the solutions for all of the vertices is stored in D(n− 1, ·).

This is the Bellman-Ford algorithm. Its complexity is O(nm), where n is the
number of vertices and m is the number of edges (that is, n = |V | ,m = |E|). Note
that for a fully-connected graph, there are n2 edges, so this would take O(n3) time.

Negative Cycles If the graph has a negative weight cycle, then we will notice that
the shortest path changes after n − 1 iterations (when otherwise it wouldn’t). So
if we keep doing Bellman-Ford and the nth iteration results in a different row than
the (n − 1)th iteration, there is a negative weight cycle. Namely, check if ∃z ∈ V :
D(n, z) < D(n− 1, z); if there is, the cycle involves z and we can backtrack through
D to identify the cycle.

3.2.2 From All Vertices: Floyd-Warshall

What if we don’t just want the shortest path from s ; z for all z ∈ V , but for all
pairs of vertices (that is, from any start to any end). The naïve approach would be
to compute Bellman-Ford for all vertices, taking O(mn2) time. However, we can use
the Floyd-Warshall algorithm to compute it in O(n3) time, instead—this is better
for denser graphs, where n < m ≤ n2.

This should intuitively be possible, since the shortest path from s → z probably
overlaps a lot with the shortest path from s′ → z if s and s′ are neighbors.

First, lets assign a number to each vertex, so V = {v1, v2, . . . , vn}. Now our subprob-
lem is the “prefix” of the vertices, so we solve the all-pairs problem by only using some
subset of vertices: {v1, v2, . . . , vi} (and allowing ∅ as our base case). This is done for
all possible start and end vertices, so s, t ∈ {v1, v2, . . . , vn}. Then,

Let D(i, s, t) be the shortest path from s→ t using a subset of the first i vertices. To
start off, if we allow no intermediate vertices, only vertices that share an edge have a
valid base path length; namely, the base cases are:

D(0, s, t) =

{
∞ if ∃(s, t) ∈ E
w(s, t) otherwise

Now lets look at the recurrence. There’s a shortest path P from s→ t, right? Well,
what if vi is not on that path? Then we can exclude it, defering to the (i−1)th prefix.
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And if it is? Then our path looks something like this:

s t

vi

v1, . . . , vi−1

(note that {v1, . . . , vi−1} might be empty, so in fact s→ vi → t, but that doesn’t matter)

Then, our recurrence when vi is on the path is just the shortest path to vi and the
shortest path from vi! So, in total,

D(i, s, t) = min

{
D(i− 1, s, t) (not on the path)
D(i− 1, s, i) +D(i− 1, i, t) (on the path)

Notice that this implicitly determines whether or not {v1, . . . vi} is sufficient to form
the path s → t because of the base case: we have ∞ wherever s 9 t, only building
up the table for reachable places. Thus, D(n, ·, ·) is a 2D matrix for all pairs of (start,
end) points.

Negative Cycles If the graph has a negative weight cycle, a diagonal entry in the
final matrix will be negative, so check if ∃v ∈ V : D(n, v, v) < 0.

3.3 Connected Components

Given a graph, there’s a basic question we need to be able to answer:

What parts of the graph are reachable from a given vertex?

A vertex is connected to another if a path exists between them, and a connected
component in a graph is a fancy way to refer to a set of vertices that are all reachable
from each other.

A B

C
D E

Component 1
Component 2

G = (V,E)

DFS lets us find the connected components easily in O(n+m) time since whenever
it encounters an unvisited node (post-exploration) it must be a separate component.
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3.3.1 Undirected Graphs

How do we find a path between two vertices (s, e) using DFS on an undirected graph?
Well, since prev [e] tracks the first vertex to explore e, we can traverse this until we
reach our original vertex s, so the path becomes: P = {e, prev[e], prev[prev[e]], . . . , s}.
Notice that the exploration order of Explore() actually makes this the shortest
path, since prev [v] is only modified the first time that v is visited (and the earliest
visit obviously comes from the quickest exploration).

(I don’t think this last statement is actually true, so proceed with caution)

3.3.2 Directed Graphs

Directed graphs (also called digraphs) can be traversed as-is using algorithm 3.2,
but finding paths is a little more challenging from an intuitive standpoint. However,
its implementation is just as simple as before.

A B C

D E F

G H

B (1, 16)

C (12, 15)

F (13, 14)

A (2, 11)

D (3, 10)

H (8, 9)E (4, 7)

G (5, 6)

Figure 3.1: A directed graph (left) and its DFS tree with pre- and post-visit clock values
at each vertex (right). The dashed edges in the tree represent edges that were ignored
because the vertices were already marked “visited.”

We’ll create a so-called “clock” that tracks the first and last “times” that a node was
visited, putting these in global pre[·] and post [·] arrays, respectively. Specifically, we’ll
define Previsit(v) to store pre[v] = clock++ and Postvisit(v) to do likewise but
store in post [v].1 An example of the values in these variables at each vertex is shown
in Figure 3.1 after a DFS traversal. Note that a DFS traversal tree can start at any
node; the tree in Figure 3.1 is just one of the possible traversals of its graph (namely,
when starting at vertex B).

Types of Edges Given a directed edge z → w, it’s classified as a tree edge if it’s
one of the primary, first-visited edges. Examples from Figure 3.1 include all of the
1 Here, the post-increment syntax is an allusion to C, so the clock is incremented after assigning its
previous value to the post array.

Kudrayvtsev 37



ku
dra

yv
tse

v
CHAPTER 3: Graphs

black edges, like (B,A). The other, “redundant” edges are broken down into three
categories depending on their relationship in the graph; it’s called a. . .

• back edge if it’s an edge between vertices going up the traversal tree to an
ancestor. Examples from Figure 3.1 include the dashed edges like (F,B) and
(E,A).

• forward edge if it’s an edge going down the tree to a descendant. Examples
from Figure 3.1 include the dashed edges like (D,G) and (F,H).

• cross edge if it’s an edge going across the tree to a sibling (a vertex at the
same depth). Unfortunately there are no examples in Figure 3.1, but it could
be (E,H) if such an edge existed.

In all but the forward-edge case, post[z] > post[w]; in the latter case, though, it’s the
inverse relationship: post[z] < post[w].

The various categorizations of (possibly-hidden) edges in the DFS traversal tree can
give important insights about the graph itself. For example,

Property 3.1. If a graph contains a cycle, the DFS tree will have a back edge.

3.3.3 Acyclic Digraphs

A directed acyclic graph (or DAG) contains no cycles (and thus no back edges,
as we just saw). Given a DAG, we want to topologically sort it: order the vertices so
that the higher nodes of the DFS tree have less children than than lower nodes (that
is, the degree of a vertex is inversely-proportional to its depth in the DFS tree).

We can achieve this by running DFS and ordering the vertices by their post-order
clock values; this takes linear time.2

Example 3.1: Topological Ordering

Given the following graph, arrange the vertices by (one of their possible)
topological ordering:

X U

W Y

Z

2 It takes linear time since we can avoid a O(n log n) sort: given a fixed number of contiguous,
unique values (the post-orders go from 1 → 2n), we can just put the vertex into its slot in a
preallocated 2n-length array. DFS takes linear time, too, so it’s O(n + m) overall.
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Answer:{X,Y,Z,U,W},thoughthat’sonlyoneofthethreepossibleanswers.In
allcases,XandYmustgofirst.

After we’ve transformed a graph based on its topological ordering, some vertices have
important properties:

• a source vertex has no incoming edges (din(v) = 0)

• a sink vertex has no outgoing edges (din(v) = 0)

A DAG will always have at least one of each. By this rationale, we can topologically
sort a DAG by repeatedly removing sink vertices until the graph is empty. The
question now becomes: how do we find sink vertices?

First, we’ll answer a related question: what’s the analog of a connected component
in generic digraphs?

3.4 Strongly-Connected Components

Vertices v and w are strongly connected if there is a path from v ; w and vice-
versa, from w ; v. Then, a strongly-connected component in a digraph is a
maximal set of strongly-connected vertices.

Identify the strongly-connected components in this directed graph:

A B C

D E F

G

H I

J K

L

Answer:Therearefive.

The highlighted components are rendered in Figure 3.2.

Consider the meta-graph of the strongly-connected components presented in the ex-
ample above: what if we collapsed each component into a single vertex? The labeled
result (see Figure 3.2) is actually a DAG in itself!
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A B,E C,F,G D H,I,J,K,L

This will always be the case, giving us a nice property:3

Property 3.2. Every directed graph is a directed acyclic graph of its strongly-
connected components.

A B C

D E F

G

H I

J K

L
A B,E C,F,G

D H,I,J,K,L

Figure 3.2: A directed graph broken up into its five strongly-connected com-
ponents, and the resulting meta-graph from collapsing these components into a
single “meta-vertex” (again, ignore the implication that vertex F is part of the
blue component—this is just a visual artifact).

Let’s discuss the algorithm that finds the strongly-connected components; in fact,
the order in which it finds these components will be its topologically-sorted order
(remember, that’s in order of decreasing post-visit numbers). We’ll actually achieve
this in linear time with two passes of DFS.

3.4.1 Finding SCCs

Remember our basic idea for topologically sorting a graph: find a sink, rip it out, and
repeat until the graph is empty. The idea for finding SCCs is similar: we’re going to
find a sink component (that is, a strongly-connected component that is a sink in its
metagraph, so it only has incoming edges) and output it, repeating until the graph is
empty.

3 The proof of this is fairly straightforward: if there was a cycle in the metagraph, then there is a
way to get from some vertex S to another vertex S′ and back again (by definition). However, S
and S′ can’t connected to each other, because if they were, they’d be a single strongly-connected
component. Thus we have a contradiction, and the post-SCC metagraph must be a DAG. �
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That begs the question: how do we find a sink SCC?4 More specifically, as explained
in footnote 4, how do we find any vertex within a sink component?

A key property holds that will let us find such a vertex:

Property 3.3. In a general directed graph, the vertex v with the highest post-
visit order number will always lie in a source strongly-connected component.

Given this property, how do we find a vertex w in a sink SCC? Well, it’d be great if
we could invert our terms: we can find a source SCC and want a sink SCC, but what
if we could find sink SCCs and wanted to find a source SCC? Well, what if we just. . .
reversed the graph? So now sink vertices become sources and vice-versa, and we can
use the property above to find a source-in-reversed-but-sink-in-original vertex!

For a digraph G = (V,E), we look at GR = (V,ER), the reverse graph of G, where
ER = {(w, v) : (v, w) ∈ E}, the reverse of every edge in E. All of our previous
notions hold: the source SCCs in G become the sink SCCs in GR and vice-versa, so
the topologically-sorted DAG is likewise reversed. From a high level, the algorithm
looks as follows:

1. First, create the reverse graph GR.

2. Perform DFS on it to create a traversal tree.

3. Sort the vertices decreasing by their post-order numbers to identify the vertex
v to start DFS from in the original graph.

4. Run the standard connected-component algorithm using DFS (from algorithm 3.2)
on G starting at v—increase a component count tracker cc whenever exploration
of a vertex ends—to label each SCC.

5. When DFS terminates for a component, set v to the next unexplored vertex
with the highest post-order number and go to Step 4.

6. The output is the metagraph DAG in reverse topological order.

3.5 Satisfiability

This is an application of our algorithms for determining (strongly-)connected compo-
nents: solving SAT or satisfiability problems. To define this problem, we first need
some new terminology:

• A Boolean variable x can be assigned to either true or false.

4 Though the same rationale of “find one and remove it” applies to source SCCs, sinks are easier
to work with. If v is in a sink SCC, then Explore (v) visits all of the vertices in the SCC and
nothing else; thus, all visited vertices lie in the sink. The same does not apply for source vertices
because exploration does not terminate quickly.

Kudrayvtsev 41



ku
dra

yv
tse

v
CHAPTER 3: Graphs

• A literal is one of the formations of the variable: x or x, which would be “NOT
x”. For n variables, we have 2n literals:

x1, x1, x2, x2, . . . , xn, xn

• A clause is a series of literals connected with logical OR. For example,

x3 ∨ x5 ∨ x1

• A formula is a series of clauses connected with logical AND. For example, the
following is a formula:

f = (x2)︸︷︷︸
clause

∧ (x3 ∨ x4)︸ ︷︷ ︸
clause

∧ (x3 ∨ x5 ∨ x1 ∨ x2)︸ ︷︷ ︸
etc.

∧ (x2 ∨ x1)

• A formula in following this form—a set of AND-connected clauses composed of
OR-connected literals—is said to be in conjunctive normal form, or CNF.
Any formula can be converted to CNF, but its size may blow up quickly.

For a clause to be “satisfied”, it must have at least one literal be true. For a formula
to be satisfied, all of its clauses must be satisfied. This is the full definition of the
SATisfiability problem:

SAT:

Input: A Boolean formula f made up of n variables (x1, x2, . . . , xn) and
m clauses.

Output: A set of assignments to the n variables such that the formula is
satisfied—at least one literal in each clause is true—or “no” if
no such assignment exists.

Example 3.2: SAT

Given the following formula,

f = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1)

assign a value to each xi to satisfy f .

Answer:x1=F,x2=T,x3=Fisoneviablesolution,buttherearemany.

Generally-speaking, a k-SAT problem limits the clauses to having ≤ k elements, so
the above example is 3-SAT. We’ll see later that k-SAT is np-complete for all k ≥ 3,
but there’s a polynomial time algorithm for 2-SAT.
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3.5.1 Solving 2-SAT Problems

Since we are limiting our clauses to have up to two elements, we can break any formula
down into two categories: either all of the clauses have two elements, or at least one
is a unit clause.

Simplifying

A unit clause is a clause with a single literal, such as (x4). If a formula f has unit
clauses, we know more about the satisfiability conditions and can employ a basic
strategy:

1. Find a unit clause, say the literal ai.

2. Satisfy it, setting ai = T .

3. Remove clauses containing ai (since they’re now satisfied) and drop the literal
ai from any clauses that contain it.

4. Let f ′ be the resulting formula, then go to Step 1.

Obviously, f is satisfiable iff f ′ is satisfiable. We repeatedly remove unit clauses until
either (a) the whole function is satisfied or (b) only two-literal clauses exist. We can
now proceed as if we only have two-literal clauses.

Graphing 2-SATs

Let’s convert our n-variable, m-clause formula (where every clause has two literals)
to a directed graph:

• 2n vertices corresponding to x1, x1, . . . , xn, xn.

• 2m edges corresponding to two “implications” per clause.

In general, given we have the clause (α ∨ β), the implication graph has edges α→ β
and β → α.

For example, given

f = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1)

the resulting graph would be:

x1 x2 x3

x1 x2 x3

Now, we follow the path for a particular literal. For example, here are the implication
paths starting from x1 = T :
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x1 x2 x3

x1 x2 x3

Clearly, there’s a path x1 ; x1, and obviously that implication is nonsense—x1 =⇒
x1 is a contradiction. However, if x1 = F , we have no leads (that is, x1 is a sink
vertex), so it might be okay?

Obviously, if x1 = F also led to an implication path resulting in a contradiction, we
could conclude that f is not satisfiable. Purely from the perspective of graph theory,
having a path from x1 to x1 and vice-versa implies that they’re part of a connected
component.

Property 3.4. If a literal ai and its inversion ai are part of the same strongly-
connected component, then f is not satisfiable.

With this property, we can prove when f is satisfiable: if, for every variable x, xi
and xi are in different strongly-connected components, then f is satisfiable. Here’s
an algorithm that adds a little more structure to this basic intuition:

1. Find the sink SCC, S.

2. Set S = T ; that is, satisfy all of the literals in S.

3. Since these are all tail-ends of their implications, the head will implicitly be
satisfied. Thus, we can rip out S from the graph and repeat.

4. Then, S will be a source SCC, so that setting S = F has no effect (setting the
head of an implication to false means we don’t need to follow any of its outgoing
edges).

This relies on an important property which deserves a proof.

Property 3.5. If ∀i, the literals xi and xi are in different strongly-connected
components, then:

S is a sink SCC⇐⇒ S is a source SCC

Given this property, we can formalize the 2-SAT algorithm a little further:

1. First, assume that the Boolean function in CNF-form, f , only has two-literal
clauses (since we can force that to be the case by simplifying unit clauses).

2. Construct the graph G for f .

3. Find a sink SCC, S, using DFS and set S = T and S = F .

4. Remove both S and S.
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5. Repeat until the graph is empty.

The only complex task here is finding SCCs which we know takes linear time, so the
overall running time is O(n+m).

3.6 Minimum Spanning Trees

The input to the minimum spanning tree problem (or MST) is an undirected
graph G = (V,E) with weights w(e) for e ∈ E. The goal is to find the minimal-size,
minimum weight, connected subgraph that “spans” the graph. Naturally, the overall
weight of a tree is the sum of the weights of edges.

Note some basic properties about trees:

• A tree on n vertices has exactly n− 1 edges.

• Exactly one path exists between every pair of vertices.

• Any connected G = (V,E) with |E| = |V | − 1 is a tree.

This last point bears repeating, as it will be important in determining the
minimum cut of a graph, later. The only thing necessary to prove that a graph
is a tree is to show that its edge count is its vertex count minus one.

3.6.1 Greedy Approach: Kruskal’s Algorithm

We’ll first attempt to build the minimum spanning tree by consistently building up
from vertices with the lowest cost without creating any cycles. Our running example
graph will be:

121
2

9
12

7

6

5 4

3

9

12

9

9

12
12

9
12

7

7

9

9

12
7 7

The first 5 edges are extremely easy to determine, but the 6-cost edge would cause a
cycle:
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All of the 7-cost edges can be added in without trouble—notice that them not being
connected is not relevant:

121
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12
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6

5 4

3

9

12

9

9

12
12

9
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9

12
7 7

Finally, all but the last 9-cost edge can be added in to create a final MST for the
graph. Notice that the vertices touched by the unused 9-cost edge are connected by
a longer path.
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This is Kruskal’s algorithm, and its formalized in algorithm 3.3, below. Its run-
ning time is O(m log n) overall, since sorting takes O(m log n) time and checking
for cycles takes O(log n) time using the union-find data structure and operates on
m items.5 Its correctness can be proven by induction on X, the MST for a subgraph
of G, as we add in new edges.

5 Reference Algorithms, pp. XX for details on the union-find data structure.
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Algorithm 3.3: Kruskal(·), a greedy algorithm for finding the minimum
spanning tree of a graph.

Input: An undirected graph, G = (V,E) and its edge weights, w(e).
Result: The minimum spanning tree of G.

Sort E by ascending weight (via Mergesort(E), etc.)
Let X := ∅
foreach e = (v, w) ∈ E do // in sorted order

if X ∪ e does not create a cycle then
X = X ∪ e

end
end
return X

3.6.2 Graph Cuts

The proof of correctness of Kruskal’s algorithm (omitted from the above) is deeply
related to graph cuts, which are our next topic of discussion. A cut in a graph is a
set of edges that partitions the graph into two subgraphs. Formally, for an undirected
graph G = (V,E) and the partition V = S ∪ S, the cut is:

cut
(
S, S

)
= {(v, w) ∈ E : v ∈ S,w ∈ S}
= edges crossing S ←→ S

An cut on our running example graph is demonstrated in Figure 3.3. We’ll look at
determining both the minimum cut—the fewest number of edges necessary to divide a
graph into two components—and the maximum cut—the cut of the largest size—later
when discussing optimization problems.

Cuts come with an important property that becomes critical in proving correctness
of MST algorithms. In one line, its purpose is to show that any minimum edge
across a cut will be part of an MST.6

6 Though its important to understand the proof of correctness of Property 3.6, it’s left out here
because the lectures cover the material to a sufficient degree of formality.
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Figure 3.3: The edges in red cut the graph into the blue and green subgraphs.

Property 3.6 (cut property). For an undirected graph, G = (V,E), given:

• a subset of edges that is also a subset of a minimum spanning tree T of G
(even if T is unknown); that is, for:

X ⊂ E and X ⊂ T

• and a subset of vertices S ⊂ V where no edge of X is in

cut
(
S, S

)
any of the minimum-weight edges, e∗, in the above cut will be in a new minimum
spanning tree, T ′. That is:

X ∪ e∗ ⊂ T ′

Note that T ′ after adding the e∗ described in Property 3.6 and the original (potentially-
unknown) T may be different MSTs, but the purpose is to find any MST rather than
a specific MST. Critically, the weight of T ′ is at most the weight of T , so we’re always
improving.

3.6.3 Prim’s Algorithm

This variant for creating the minimum spanning tree is reminiscent of Dijkstra’s
algorithm. It’s still a greedy algorithm, but constrains the edges it can consider. Its
purpose is to always maintain a subtree along the way to finding the MST, so it will
only consider edges that are connected, choosing the cheapest one. It’s similarity to
Dijkstra’s is reflected by its running time: O((m+ n) log n).
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3.7 Flow

The idea of flow is exactly what it sounds like: given some resource and a network
describing an infrastructure for that resource, a flow is a way to get said resource
from one place to another. To model this more concretely as a graph problem, we
have source and destination vertices and edges that correspond to “capacity” between
points; a flow is a path through the graph.

Given such a network, it’s not unreasonable to try to determine the maximum flow
possible: what’s the maximum amount of resource sendable from s ; t without
exceeding any capacities?

Formally, the input is a flow network: a directed graph G = (V,E), a designated
s, t ∈ V , and a capacity for each e ∈ E : ce > 0. The goal is to find a flow—that is, a
set of “usages” on each edge—that does not exceed any edge’s capacity and maximizes
the incoming flow to t.

Notice from the example below that cycles in a flow network are not problematic:
there’s simply no reason to utilize an entire cycle when finding a flow.

Example 3.3: Max-Flow

Given the following graph:
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d
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3

determine a flow of maximum size that satisfies the edge constraints.

The solution is as follows:
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s

a

b

c

d

e

f

t

6/6

1/4

5/5

5/8

1/2

1/1

7/8

0/3

2/2
5/5

7/7

2/3

This is obviously the maximum flow because the total capacity incoming to
t is 12, so we’ve reached the hard cap. Namely,

size(f) = 6 + 1 + 5︸ ︷︷ ︸
outgoing

= 5 + 7︸ ︷︷ ︸
incoming

= 12

The key construction in calculating the maximum flow network is the residual flow
network, which effectively models the flow capacities remaining in a graph as well as
the “reverse flow.” Specifically, the network Gf = (V,Ef ) is modeled with capacities
cf such that:{

cuv − fuv if (u, v) ∈ E and fuv < cuv

fvu if (u, v) ∈ E and fvu > 0

3.7.1 Ford-Fulkerson Algorithm

The running time of the Ford-Fulkerson algorithm is pseudo-polynomial in
O(C |E|), where C is the theoretical maximum output flow to t (the sum of its
incoming vertices’ capacities).

This analysis relies on a (huge) assumption that all capacities are integers; then, the
algorithm guarantees that the flow increases by ≥ 1 unit per round. Since there are
≤ C rounds to the algorithm, and a single round takes O(n+m) time (dominated by
path-finding), it requires O(mC) time in total (if we assume |E| ≥ |V | to simplify).

Its correctness follows from the max-flow–min-cut theorem, shown (and proven) later.

3.7.2 Edmonds-Karp Algorithm

This algorithm fundamental varies in the way it augments f . Rather than using any
path (found via depth-first search, for example), it uses the shortest path found by
breadth-first search. When this is the case, it can be proven that it takes at-most mn
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Algorithm 3.4: The Ford-Fulkerson algorithm for computing max-flow.

Input: A flow network: a digraph G = (V,E), a capacity for each e ∈ E, ce, and
start/end vertices s, t ∈ V .

Result: The maximal flow graph, where fe indicates the maximum flow along
the edge e ∈ E.

∀e ∈ E : fe = 0
repeat

Build the residual network, Gf for the current flow, f .
Find any path P = s; t in Gf .
Let c(P ) be the smallest capacity along P in Gf : c(P ) = mince{e ∈ P}.
Augment f by c(P ) units along P .

until no s; t path exists in Gf

return f

rounds to find the maximum flow; thus, the overall running time of the Edmonds-
Karp algorithm is O(nm2).

Fun Fact: Record-Breaker

James Orlin achieved a max-flow algorithm with a O(mn) run time in 2013.

3.7.3 Variant: Flow with Demands

This variant on the max-flow problem poses demands on certain edges, requiring that
they have a particular capacity. We will see how to reduce this to the regular max-flow
problem.

The input is a flow network, as before, as well as a demand for each edge:

∀e ∈ E : d(e) ≥ 0

A feasible flow f is thus one that fulfills both the demand and does not exceed
the capacity: d(e) ≤ f(e) ≤ c(e). If we can find the existence of a feasible flow,
augmenting it to be the maximum feasible flow will be straightforward.

We want to find a new flow network—with graph G′ = (V ′, E ′) and edge capacities
c′(e)—that we can plug-and-play into our existing max-flow algorithms.

Integrating the demands into the capacities is straightforward: an edge with capacity
5 and demand 3 is similar to an edge with capacity 2 and no demand. This is the
first step in our reduction: c′(e) = c(d)− d(e).
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This is insufficient, though. We need to model the demand itself. Each vertex has
some amount of incoming demand and some outgoing demand. To ensure its fulfill-
ment, we connect every v ∈ V to a new “master” source s′ and sink t′. Namely,

1. add an edge s′ → v with c′((s′, v)) = din(v) (where din(v) is the total incoming
demand to v) for every vertex except s.

2. add an edge v → t′ with c′((v, t)) = dout(v) for every vertex except t.

Finally, to ensure that the flow out of s matches the flow into t, we create an edge
t→ s with c′((t, s)) =∞.

For a flow f in G′, we know it cannot exceed the total demand, so size(f ′) ≤ D. We
call f a saturated flow if size(f ′) = D.

Property 3.7. A flow network G with additional demands has a feasible flow if
the constructed G′ has a saturated flow.

3.8 Minimum Cut

Remember, a cut is a way to split (or partition) a graph into two parts—call them
“left” and “right” subgraphs—so V = L ∪ R. In this section, we’ll focus on a specific
type of cut called an st-cut, which separates the vertices s and t such that s ∈ L and
t ∈ R.

This is an st-cut within our example graph from before:

s

a

b

c

d

e

f

t

Notice that neither subgraph actually needs to be connected: f ∈ L but is not
connected to a, b, or s. We’re interested in the capacity of this cut; this is the total
capacity of edges from L; R. These are the edges that “exit” L and are highlighted
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in green above.

capacity(L,R) =
∑

(v,w)∈E:
v∈L,w∈W

cvw

The capacity of the above example cut is 26 (again, simply sum up the capacities of
the green edges). Given these definitions and example, we can formulate a problem.

Here’s a min-st-cut of our example graph:

s

a
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How do we know that this is a min-st-cut? Because its capacity is of size 12, and
we’re about to prove that the capacity of the minimum cut is equal to the capacity of
the maximum flow. Obviously, 12 is the theoretical maximum flow on this graph, so
since this cut is equal to it, we know it’s optimal (remember that we actually showed
that it’s also the actual maximum flow in Example 3.3 above).

3.8.1 Max-Flow = Min-Cut Theorem

This section walks through the proof that the minimum capacity of an st-cut is
equal to the size of the maximum flow for a graph.7 This is the max-flow–min-
cut theorem; it’s a long proof, but it’s broken down into two key, independently-
digestible parts.

To show that size of
max flow = min capacity

of st-cut we will proceed by showing

size of
max flow ≤ min capacity

of st-cut and size of
max flow ≥ min capacity

of st-cut

separately, which clearly implies that they are actually equal.

7 It’s important to note that we’re explicitly specifying that it’s the minimum st-cut—which sepa-
rates s and t—as opposed to simply the minimum cut. In the latter case, there’s no relation to
the implicit s and t in the max-flow problem.

Kudrayvtsev 53



ku
dra

yv
tse

v
CHAPTER 3: Graphs

Forward Direction

First, we aim to prove that the size of the maximum flow is at most the minimum
st-cut:

size of
max flow ≤ min capacity

of st-cut

We can actually achieve this by proving a more general, simpler solution, proving
that for any flow f and any st-cut (L,R), that the flow is at most the cut capacity:

size(f) ≤ capacity(L,R)

Obviously, if it’s true for any flow and any cut, it’s true for the maximum flow and
the minimum cut.

Claim 1: The size of a flow is the flow coming out of L sans the flow coming in to
L (notice that R is not involved):

size(f) = f out(L)− f in(L)

Let’s expand this definition: the out-flow is the total flow along edges leaving
L and the in-flow is similarly the total flow along edges entering L.

f out(L)− f in(L) =
∑

(v,w)∈E:
v∈L,w∈R

fvw −
∑

(w,v)∈E:
w∈R,v∈L

fwv

We’ll pull a trick from middle school algebra out of our hat: simultaneously add
and subtract the same value so that the whole equation stays the same. That
value’s name? Albert Einstein The total flow of edges within L:

=
∑

(v,w)∈E:
v∈L,w∈R

fvw −
∑

(w,v)∈E:
w∈R,v∈L

fwv +
∑

(v,w)∈E:
v∈L,w∈L

fvw −
∑

(w,v)∈E:
w∈L,v∈L

fwv

︸ ︷︷ ︸
=0, same edges, just relabeled

Notice the first and third term: one is all edges v ; R, while the other is all
edges v ; L. Together, this is all of the flow leading out of vertices in L.
Similarly, the second and third terms are the total flows leading in to any v in
L. Thus,

=
∑
v∈L

f out(v)−
∑
v∈L

f in(v)

Now consider the source vertex, s. Its incoming flow is obviously zero by defi-
nition:

=
∑
v∈L\s

(
f out(v)− f in(v)

)
+ f out(s)
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However, by the very definition of a valid flow, the incoming flow must equal
the outgoing flow! Thus the entire summation is zero. And again, by definition,
the size of a flow is the size of the source vertex’s total flow, so we arrive at our
original claim:

f out(L)− f in(L) =
∑
v∈L\s

(
f out(v)− f in(v)

)
︸ ︷︷ ︸

=0

+f out(s)

= f out(s)

= size(f) �

Claim 2: Let’s finish the job. We now claim (and show) our original goal:

size(f) ≤ capacity(L,R)

From Claim 1, we have

size(f) = f out(L)− f in(L)

Obviously, if a = b− c, then a ≤ b alone. Thus,

size(f) ≤ f out(L)

Now what exactly is f out(L)? It’s the total flow leaving L. But obviously the
total flow is limited to the total capacity of each edge—any edge flow exceeding
its capacity would be an invalid flow. Thus,

size(f) ≤ f out(L) ≤ capacity(L,R) �

Backward Direction

Whew, halfway there. Now we aim to prove that the maximum flow is at least the
minimum cut’s capacity:

max
f

size(f) ≥ min
(L,R)

capacity(L,R)

This proof’s approach is quite different than the other. We start with the optimal
max-flow f ∗ from the Ford-Fulkerson algorithm. By definition, the algorithm termi-
nates when there is no path s; t in the residual graph Gf∗ (refer to algorithm 3.4).

Goal Given this fact, we’re going to construct an (L,R) cut such that:

size(f ∗) = capacity(L,R)

This will prove our statement. Even if f ∗ is not the max-flow, it’s no bigger than the
max-flow. Similarly, the capacity is at least as big as the minimum. In other words,

Since: max
f

size(f) ≥ size(f ∗) = capacity(L,R)︸ ︷︷ ︸ ≥ min
(L,R)

capacity(L,R)

then: max
f

size(f) ≥ min
(L,R)

capacity(L,R)
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Cut Construction Again, the underbraced statement is what we’re aiming to
prove. We know that there’s no path s ; t in the residual, so let’s let L be the
vertices that are reachable from s in the residual, Gf∗ . Then, let R = V \ L, the
remaining vertices. We know s ∈ L and t /∈ L, so (L,R) is an st-cut by definition.

Now we need to prove that this constructed (L,R) cut has a capacity equal to the
flow size.

Cut Capacity What are the properties of this cut? Again, L is the set of vertices
reachable from s in the residual network.

What about the edges leading from L; R in the original network? Well, they must
be saturated: if an edge (v, w) wasn’t, then there’d be an edge (v, w) in the residual
and thus w would be reachable from L. This is a contradiction on how we constructed
L.

Thus, for every (v, w) ∈ E where v ∈ L,w ∈ R, we know f ∗vw = cvw. Since every
edge leaving L ; R is saturated, the total flow leaving L is their sum, which is the
capacity of L by definition. Thus:

f ∗out(L) = capacity(L,R)

Now consider the edges R ; L. Any such edge (z, y) incoming to L in the original
graph must not have its back-edge (y, z) appear in the residual. If it did, then there’s
a path s ; z, so z ∈ L, but we just said that z ∈ R! Another contradiction. Thus,
for every (z, y) ∈ E where z ∈ R, y ∈ L, we know that f ∗zy = 0.

f ∗in(L) = 0

In part of our proof in the forward direction, we showed that the size of a flow is
related to the flows of L (see Claim 1 ). By simple substition, we achieve our goal
and so prove the backward direction:

size(f ∗) = f ∗out(L)− f ∗in(L) = f ∗out(L)

= capacity(L,R) �

We’ve shown that the inequality holds in both directions. This completes the proof of
the theorem: the size of the maximum flow is equal to the capacity of the minimum
st-cut. �

3.8.2 Application: Image Segmentation

The above proof provided us with some beautiful corollaries. By operating under
the assumption that f ∗ from Ford-Fulkerson is not the max flow, we still proved the
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theorem. This thus proves the correctness and optimality of Ford-Fulkerson: if you
stop when there is no longer a path s ; t in the residual network, you have found
the maximum flow. Furthermore, the constructed (L,R) cut from the maximum flow
gives a minimum cut.

These ideas are key in image segmentation, where the goal is to
separate the image into objects. We’ll keep it simple, aiming to
separate the foreground from the background. For example, we
want to discern the triangle from the rest of the “image” on the
right.

Problem Statement

We’re going to interpret images as an undirected graph G = (V,E): vertices are pixels
and edges connect neighboring pixels. For example,

We also have the following parameters that we assume to be non-negative:

• For each pixel i ∈ V , we track its likelihood of being either in the foreground
(fi) or the background (bi)—though it might make sense for fi + bi = 1 (prob-
abilities), this isn’t necessarily required.

• Additionally, there’s a “separation penalty” pij across each edge (i, j) ∈ E which
represents the cost of segmenting into different objects along that edge.

Keep It Simple, Stupid

Since we’re studying algorithms rather than computer vision, our examples
are very simplistic and these parameters are hard-coded. However, in a re-
alistic setting, these values would be otherwise gleaned from the image. For
example, hard edges in an image are typically correlated with object separa-
tion, so edge detection might be used to initialize the separation penalties.
Similarly, you might use a statistical metric like “most common pixel color”
and a color difference to quantify the fore/background likelihoods.

Our goal is to partition the pixels into a foreground and a backgrond: V = F ∪B. We
define the “quality” of a partition as follows: it’s the total likelihood of the foreground
plus the total likelihood of the background minus the total separation penalty.

w(F,B) =
∑
i∈F

fi +
∑
j∈B

bj −
∑

(i,j)∈E

pij
(note that the edges go
F ; B, so i ∈ F , j ∈ B)
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Thus, the overall goal is to find: max(F,B)w(F,B). We’re going to solve this by
reducing to the min-cut problem. There are a few key points here from the high level:
our max should be a min and our totals need to be positive (so the separation penalty
total should be positive).

Reformulation: Weights

Let L =
∑

i∈V (fi + bi), the sum of likelihoods for every pixel. Then, we can refor-
mulate the weight problem as follows. Since,

L−
∑
i∈F

bi +
∑
j∈B

fj =
∑
i∈F

fi +
∑
j∈B

bj

we can substitute in for w(F,B):

w(F,B) =
∑
i∈F

fi +
∑
j∈B

bj −
∑

(i,j)∈E

pij

= L−
∑
i∈F

bi +
∑
j∈B

fj −
∑

(i,j)∈E

pij︸ ︷︷ ︸
w′(F,B)

We’ll call this latter value w′(F,B). This converts things to a minimization problem:
maxw(F,B) = minw′(F,B). Now we can find the minimum cut by further reducing
it to the max-flow.

Reformulation: Flow

To formulate our pixel-graph as a flow network, we’ll make some simple modifica-
tions. Our undirected graph will be a digraph with each edge being bidirectional; our
capacities will be the separation costs; and our source and sink will be new vertices
representing the foreground and background:

s

t

The foreground and background likelihoods are encoded as the capacities on the edges
leading from s and to t, respectively. So for any pair of vertices, we have the following:

s t

i

fi bi

j

fj bj

pij
pji
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When we find the maximum flow of this new network, we will also find the minimum
cut by construction (as outlined in the backward direction proof of the max-flow–
min-cut theorem). We will find the max-flow f ∗ such that:

size(f ∗) = capacity(F,B)

What’s described by this st-cut (F,B)? It’s the edges leaving F ; B. For every
pixel-vertex i ∈ F , we are cutting across the edge i → t which has capacity bi.
Similarly, for every vertex j ∈ B, we are cutting s → j with capacity fj. Finally,
we’re also cutting every neighbor i→ j with capacity pij (since we’re only considering
edges from F to B, we ignore the j → i edges). In total:

capacity(F,B) =
∑

(v,w)∈E:
v∈F,w∈B

cvw definition

=
∑
i∈F

bi +
∑
j∈B

fi +
∑

(i,j)∈E:
i∈F,j∈B

pij substitution

= w′(F,B)

(Question: shouldn’t it be minus the separation costs rather than plus to match
w′(F,B)? I’m not sure how to reconcile this. . . )

Summary

This describes the application of the min-cut–max-flow theorem to image segmenta-
tion. Given an input (G, f, b, p), we define the flow network (G′, c) on the transformed
data as defined above. The max-flow f ∗ is then related to the min-cut capacity that
fulfills our transformed requirement, min(F,B)w

′(F,B), whose cut also maximizes the
w(F,B) we described.
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If you find this section fun, check out my notes on Applied Cryptography.

In asymmetric cryptography, we typically deal with massive integers (think 1024-bit
values, where 21024 ≈ 10308). This is what ensures security: computational require-
ments increase exponentially with bit lengths.

4.1 Modular Arithmetic

I’m not going to review how modular arithmetic actually works, but we’ve likely all
seen it before: x mod 2 tells us if a number is odd or even, and a clock wraps around
every 12 hours. Generally-speaking, x ≡ y (mod N) means that x/N and y/N have
the same remainder. By definition, x mod N = r if there’s a multiple of N plus r
that works out to be x, so qN + r = x.

An equivalence class is the set of numbers which are equivalent under a modu-
lus. So “mod 3” has 3 equivalence classes: {−6,−3, 0, 3, 6, . . .}, {−2, 1, 4, 7, . . .}, and
{−1, 2, 5, . . .}.

4.1.1 Modular Exponentiation

Equivalence in modular arithmetic works just like equality in normal arithmetic. So
if a ≡ b (mod N) and c ≡ d (mod N) then a+ c ≡ a+ d ≡ b+ c ≡ b+ d (mod N).

This fact makes fast modular exponentiation possible. Rather than doing xy mod N
via x · x · . . . or even ((x · x) mod N) · x) mod N) . . ., we leverage repeated squaring:

xy mod N :

x mod N = a1

x2 ≡ a21 (mod N) = a2

x4 ≡ a22 (mod N) = a3

. . .
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Then, we can multiply the correct powers of two to get xy, so if y = 69, you would
use x69 ≡ x64 · x4 · x1 (mod N).

Algorithm 4.1: ModExp(x, y,N), the recursive fast modular exponentiation
algorithm.

Input: x, y,N , some n-bit positive integers.
Result: xy mod N

if y = 0 then
return 1

end
z = ModExp

(
x,
⌊
y
2

⌋
, N
)

if y is even then
return z2 mod N

end
return xz2 mod N

4.1.2 Inverses

The multiplicative inverse of a number under a modulus is the value that makes
their product 1. That is, x is the multiplicative inverse of z if zx ≡ 1 (mod N). We
then say x ≡ z−1 (mod N).

Note that the multiplicative inverse does not always exist; if it does, it’s unique.
They exist if and only if their greatest common divisor is 1, so when gcd(x,N) = 1.
This is also called being relatively prime or coprime.

Quick Maffs: Unique Multiplicative Inverse

We claim that if z has a multiplicative inverse mod N , then it is unique.
The proof proceeds by contradiction.

Suppose

z ≡ x−1 and z ≡ y−1 (mod N)

where x 6≡ y (mod N). By definition, then

xz ≡ yz ≡ 1 (mod N)

but then x ≡ y (mod N), contradicting our claim. �
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Greatest Common Divisor

The greatest common divisor of a pair of numbers is the largest number that divides
both of them evenly. Euclid’s rule states that if x ≥ y > 0, then

gcd(x, y) = gcd(x mod y, y)

This leads directly to the Euclidean algorithm which runs in O(n3) time, where n
is the number of bits needed to represent the inputs.1

Algorithm 4.2: Gcd(x, y), Euclid’s algorithm for finding the greatest common
divisor.

Input: x, y, two integers such that x ≥ y ≥ 0.
Result: The greatest common divisor of x and y.

if y = 0 then
return x

end
return Gcd(y, x mod y)

Extended Euclidean Algorithm

Bézout’s identity states that if x and y are the greatest common divisors of n, then
there are some integers a, b such that:

ax+ by = n

These can be found using the extended Euclidean algorithm in O(n3) time and
are crucial in finding the multiplicative inverse. If we find that gcd(x, n) = 1, then
we want to find x−1. By the above identity, this means:

ax+ bn = 1

ax+ bn ≡ 1 (mod n) taking modn of both sides
doesn’t change the truth

ax ≡ 1 (mod n) bn mod n = 0

Thus, finding the coefficient a will find us x−1.

1 The running time comes from the fact that taking the modulus takes O
(
n2
)
time and Gcd(·)

needs ≤ 2n rounds to complete.
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Algorithm 4.3: Egcd(x, y), the extended Euclidean algorithm for finding
both the greatest common divisor and multiplicative inverses.

Input: x, y, two integers such that x ≥ y ≥ 0.
Result: d, the greatest common divisor of x and y.
Result: a, b, the coefficients fulfilling Bézout’s identity, so ax+ by = d.

if y = 0 then
return (x, 1, 0)

end
d, a′, b′ = Egcd (y, x mod y))
return (d, b′, a′ − bx

y
cb′)

4.1.3 Fermat’s Little Theorem

This is the basis of the RSA algorithm we’re about to see.

Theorem 4.1 (Fermat’s little theorem). If p is a prime number, then

ap−1 ≡ 1 (mod p)

for any number 1 ≤ a ≤ p− 1.

Proof. Let S be the possible values of a in the theorem: S = {1, 2, . . . , p− 1}

Then, look at S ′ = aS mod p:

S ′ = {1a mod p, 2a mod p, . . . , (p− 1)a mod p}

In general, S ′ is just a permutation of S, so in reality S = S ′.2 Then, their products
are equal under mod p:∏

S ≡
∏

S ′ (mod p)

1 · 2 · 3 · . . . (p− 1) ≡ 1a · 2a · 3a · . . . (p− 1)a (mod p)

(p− 1)! ≡ ap−1(p− 1)! (mod p)

If p is prime, then its greatest common divisor with any other number is 1. Thus,
every number mod p has a multiplicative inverse, so we can multiply both sides by
2 You can show this by proving that since S′ is made up of distinct, non-zero elements (by assuming
the opposite and arriving at a contradiction), its elements are also S’s elements. I’m just too lazy
to replicate it here.
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all of the inverses. Let

(p− 1)−1 =
(
−1−1 · 2−1 · . . . (p− 1)−1

)
Then, we’re done:

(p− 1)! ≡ ap−1(p− 1)! (mod p)

(p− 1)−1(p− 1)! ≡ ap−1(p− 1)!(p− 1)−1 (mod p)

1 ≡ ap−1 (mod p)

�

4.1.4 Euler’s Totient Function

The totient function is defined as the number of integers that are relatively prime to
some value:

ϕ (n) = |{x : 1 ≤ x ≤ n, gcd(x, n) = 1}|

For prime numbers, all numbers are relatively prime, so ϕ (p) = p − 1. From this
comes Euler’s theorem which is actually a generalization of Fermat’s theorem.

Theorem 4.2 (Euler’s theorem). For any N, a where gcd(a,N) = 1 (that is,
they are relatively prime), then

aϕ(N) ≡ 1 (mod N)

4.2 RSA Algorithm

Given this brief foray into number theory, we can finally derive the RSA encryption
and decryption algorithms.

Let N = pq be the product of two prime numbers. Then, ϕ (N) = (p − 1)(q − 1).
Then, Euler’s theorem tells us that:

a(p−1)(q−1) ≡ 1 (mod pq)

Suppose we take two values d and e such that de ≡ 1 (mod p− 1). By the definition
of modular arithmetic, this means that: de = 1 + k(p − 1) (i.e. some multiple k of
the modulus plus a remainder of 1 adds up to de). Notice, then, that for some m:

mde = m ·mde−1

= m ·mk(p−1)
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≡ m ·
(
mp−1)k (mod p)

≡ m · 1k (mod p) by Fermat’s little theorem

∴ mde = m (mod p)

We’re almost there; notice what we’ve derived: Take a message, m, and raise it to
the power of e to “encrypt” it. Then, you can “decrypt” it and get back m by raising
it to the power of d.

Unfortunately, you need to reveal p to do this, which reveals p− 1 and lets someone
derive de. We’ll hide this by using N = pq and Euler’s theorem. The rationale is the
same: take d, e such that de ≡ 1 (mod (p− 1)(q − 1)). Then,

mde = m ·
(
m(p−1)(q−1))k

≡ m ·
(
m(p−1)(q−1))k (mod N)

≡ m · 1k (mod N) by Euler’s theorem

∴ mde ≡ m (mod N)

That’s it. That’s RSA. (Say what?)

A user reveals some information to the world: their public key, e and their modulus,
N . To send them a message, m, you send c = me mod N . They can find your message
via:

= cd mod N

= (me mod N)d = med mod N

= m mod N

This is secure because you cannot determine (p− 1)(q − 1) from the revealed N and
e without exhaustively enumerating all possibilities (i.e. factoring is hard), so if they
are large enough, it’s computationally infeasible to do.

4.2.1 Protocol

With the theory out of the way, here’s the full protocol.

Receiver Setup To be ready to receive a message:

1. Pick two n-bit random prime numbers, p and q.

2. Then, choose an e that is relatively prime to (p− 1)(q− 1) (that is, by ensuring
that gcd(e, (p−1)(q−1)) = 1. This can be done by enumerating the low primes
and finding their GCD.
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3. Let N = pq and publish the public key (N, e).

4. Your private key is d ≡ e−1 (mod (p− 1)(q− 1)) which we know exists and can
be found with the extended Euclidean algorithm.

Sending Given an intended recipient’s public key, (N, e), and a message m ≤ N ,
simply compute and send c = me mod N . This can be calculated quickly using fast
exponentiation (see algorithm 4.1).

Receiving Given a received ciphertext, c, to find the original message simply cal-
culate cd mod N = m (again, use algorithm 4.1).

4.2.2 Limitations

For this to work, the message must be small: m < N . This is why asymmetric
cryptography is typically only used to exchange a secret symmetric key which is then
used for all other future messages.

We also need to take care to choose ms such that gcd(m,N) = 1. If this isn’t the
case, the key identity med ≡ m (mod N) still holds—albeit this time by the Chinese
remainder theorem rather than Euler’s theorem—but now there’s a fatal flaw. If
gcd(m,N) 6= 1, then it’s either p or q. If it’s p, then gcd(me, N) = p and N can easily
be factored (and likewise if it’s q).

Similarly, m can’t be too small, because then it’s possible to have me < N—the
modulus has no effect!

Another problem comes from sending the same message multiple times via different
public keys. The Chinese remainder theorem can be used to recover the plaintext
from the ciphertexts. Let e = 3, then the three ciphertexts are:

c1 ≡ m3 (mod N1)

c2 ≡ m3 (mod N2)

c3 ≡ m3 (mod N3)

The CRT states that c1 ≡ c2 ≡ c3 (mod N1N2N3), but this is just m3 “unrolled”
without the modulus! Thus, m =

3
√
m3, and finding m3 can be done quickly with the

extended Euclidean algorithm.

4.3 Generating Primes

The last step we’ve left uncovered is Step 1: generating two random primes, p and
q. This will turn out to be pretty easy: just generate random bitstrings until one of
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them is prime. This works out because primes are dense: for an n-bit number, we’ll
find a prime every n runs on average.

Given this, how do we check for primality quickly?

4.3.1 Primality

Fermat’s little theorem gives us a way to check for positive primality: if a randomly-
chosen number r is prime, the theorem holds. However, checking all r − 1 values
against the theorem is not ideal: the check takes O(rn2 log n) time.3

It will be faster to identify a number as being composite (non-prime), instead.
Namely, if the theorem doesn’t hold, we should be able to find any specific z for
which zr−1 6≡ 1 (mod r). These are called a Fermat witnesses, and every composite
number has at least one.

This “at least one” is the trivial Fermat witness: the one where gcd(z, r) > 1.
Most composite numbers have many non-trivial Fermat witnesses: the ones where
gcd(z, r) = 1.

The composites without non-trivial Fermat witnesses called are called Carmichael
numbers or “pseudoprimes.” Thankfully, they are relatively rare compared to normal
composite numbers so we can ignore them for our primality test.

Property 4.1. If a composite number r has at least one non-trivial Fermat wit-
ness, then at least half of the values in {1, 2, . . . , r − 1} are Fermat witnesses.

The above property inspires a simple randomized algorithm for primality tests that
identifies prime numbers to a particular degree of certainty:

1. Choose z randomly: z $←− {1, 2, . . . , r − 1}.

2. Compute: zr−1
?≡ 1 (mod r).

3. If it is, then say that r is prime. Otherwise, r is definitely composite.

Note that if r is prime, this will always confirm that. However, if r is composite (and
not a Carmichael number), this algorithm is correct half of the time by the above
property. To boost our chance of success and lower false positives (cases where r is
composite and the algorithm says it’s prime) we choose z many times. With k runs,
we have a 1/2k chance of a false positive.

3 I think. . . We have log n rounds of fast modular exponentiation; each one takes n2 time to mod
two n-bit numbers; and we do it r times.

Kudrayvtsev 67



ku
dra

yv
tse

v
CHAPTER 4: Cryptography

Property 4.2. Given a prime number p, 1 only has the trivial square roots ±1
under its modulus. In other words, there is no other value z such that: z2 ≡ 1
(mod p).

The above property lets us identify Carmichael numbers during the fast exponentia-
tion for 3/4ths of the choices of z, which we can use in the same way as before to check
primality to a particular degree of certainty.
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Linear programming can be viewed as part of a great revolution-
ary development which has given mankind the ability to state
general goals and to lay out a path of detailed decisions to take
in order to “best” achieve its goals when faced with practical sit-
uations of great complexity.

— George Dantzig, inventor of the simplex algorithm

L inear programming is a general technique for solving optimization problems
in which the goal (called the objective function) and the constraints can be

expressed as linear functions.

5.1 2D Walkthrough

The following is an example of a scenario that can be tackled by linear programming:

A company makes two types of products: A and B.

Suppose each unit of A makes $1 of profit, while B makes $6 of profit. However,
the factories operate under some constraints:

• The machines can only produce up to 300 units of A and 200 units of B
per day.

• The workers can only (cumulatively) work 700 hours per day. A takes 1
hour to prepare for assembly by the machine, while B takes 3 hours.

How many of each should they make to maximize their profits?

Since our goal is to maximize profits, our variables are the quantities of each product
to produce. They should be positive quantities, and shouldn’t exceed our labor supply
and machine demand constraints.
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Objective
Function:

profit = max xA + 6xB

Subject to:
0 ≤ xA ≤ 300

0 ≤ xB ≤ 200

xA + 3xB ≤ 700

You may recall from middle school algebra that we solved simple inequalities like:

y ≥ x+ 5

2x− y ≥ 0

by graphing them and then finding the overlap of valid regions, where the valid region
is determined by testing a simple point like (0, 0) or (1, 1):

This same concept will apply here with linear programming. Each of our 5 constraints
represents a half-plane within the space of our variables. In this case, each half-plane
is just a line in xAxB-coordinate plane:

xA ≤ 300

xB ≤ 200

xA ≥ 0

xB ≥ 0

xA + 3xB ≤ 700

0 100 200 300
0

100

200

300

xA

x
B

Clearly, the purple-shaded area is the only feasible region in which to search for
(xA, xB) for our objective function. Now how do we find the optimal point within
that region? Our goal is to maximize profit, so: max

p
[xA + 6xB = p]. This represents
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a series of lines in the plane, depending on p (see Figure 5.1). Our maximum profit,
then, is the highest line that is still within the region. In this case, that works out to
xA + 6xB = 1300, with xA = 100, xB = 200.

0 100 200 300
0

100

200

300

xA

x
B

Figure 5.1: Solving the linear program described in the example by finding the
highest line that intersects the feasible region.

5.1.1 Key Issues

Even with this simple example, we can identify some key points and important issues.

Integers Critically, the optimum does not have to be an integer point, despite the
fact that it was in our example. We are optimizing over the entire feasible region; in
our problem statement, though, a partial quantity of the A or B products does not
make sense. In fact, we have no way to enforce a constraint that our solution be an
integer.

This leads to an interesting conundrum: while linear programming is within the p
complexity class (that is, it’s solvable in polynomial time), integer linear programming
(denoted ILP) is np-complete. We’ll study this in more detail in chapter 6.

Optimum Location By its very nature, the optimum will lie on one of the vertices
of the convex polygon bounded by our constraints. Even if other points are optimal,
they will lie along a line (or plane in 3D, or hyperplane in n-d) which contains one
of the vertices, so that vertex will be just as optimal.

Convexity As an extension from the previous point, the feasible region will be a
convex polygon: a line segment connected by any two points within the region will
still be contained within the region. If a vertex is better than its neighboring vertices
in the polygon, it’s a global optimum.
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5.2 Generalization

The simple example above we can work out by hand and visualize neatly, but how
does this scale to 3 variables or an arbitrary n variables? Things get really hard to
visualize very quickly. The last key points that we observed above will be essential
in our generalization and lead to the simplex algorithm.

From a high level, it’s essentially a “locally-greedy” algorithm: we continually choose
better and better vertices in the convex polygon until we reach one whose neighbors
are all worse, and this is a global optimum.

5.2.1 Standard Form

First, we need to standardize the way that linear programs are represented before we
can devise a generic algorithm for solving them.

Given n variables, x1, x2, . . . , xn, the goal is to optimize the objective function given
the constraints described by an m× n matrix A and a m-length vector b as follows:

Objective
Function:

max[c1x1 + c2x2 + . . . cnxn] or simply max
c

cTx

Subject to:

a11x1 + a12x2 + . . .+ a1nxn ≤ b1

a21x1 + a22x2 + . . .+ a2nxn ≤ b2
...

am1x1 + am2x2 + . . .+ amnxn ≤ bm

and

x1 ≥ 0

x2 ≥ 0

...
xn ≥ 0

Or, simply Ax ≤ b and x ≥ 0.

We can transform most sets of problems to follow this form. However, problems
that define strict inequalities are not allowed in linear programming: notice that
maxx[x < 100], for example, is ill-defined since we can have infinite precision.

5.2.2 Example: Max-Flow as Linear Programming

The max-flow problem can be expressed as a linear program. Recall its formulations:

Max-Flow Definition:

Input: A directed graph, G = (V,E) with capacities ce > 0,∀e ∈ E.
Source and sink vertices s, t ∈ V .

Output: An optimal flow, f ∗, such that any fe cannot be any bigger while
still maintaining a valid flow.

To express this as a linear program, our objective function wants to maximize the
flow coming out of the source vertex while ensuring each edge has a valid flow:
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Objective
Function:

max
∑

(s,v)∈E

fsv

Subject to: For every e ∈ E: 0 ≤ fe ≤ ce.

For every v ∈ V \ {s, t}:
∑

(w,v)∈E

fwv =
∑

(v,z)∈E

fvz

Every term here is a linear function, so linear programming applies.

5.2.3 Algorithm Overview

With our generic problem formulation out of the way, we can work towards an algo-
rithm for finding the global optimum. Remember, the goal is to find the vertex of the
convex polygon that satisfies the constraints that is maximal relative to its neighbors.

With n variables, we’re working in n dimensions, and we have n + m constraints.
The feasible region is the intersection of n + m half-spaces and it forms a convex
polyhedron. Then, the vertices of said polyhedron are the points that satisfy some n
constraints with equality that also satisfy the other m constraints with ≤.

Bounds In the worst case, there’s a huge number of vertices in the polyhedron:
from n + m constraints, we choose n; O

((
n+m
n

))
grows exponentially. Further, there

are up to nm neighbors for each vertex.

Choices There are several algorithms that solve linear programs in polynomial time,
including ellipsoid algorithms and interior point methods. The simplex algorithm
has a worst-case bound of exponential time, but it’s still widely used because it
guarantees a global optimum and works incredibly fast on huge linear programs.

5.2.4 Simplex Algorithm

The basic high level idea of the simplex algorithm is very simple.

• We begin at x = 0, which satisfies our baseline non-negativity constraints. If it
doesn’t satisfy any of our other constraints, we know that it’s an infeasible LP.

• Then, we look for the a neighboring vertex with a (strictly) higher objective
value. When found, we “move” there and repeat this process.

• If at any point in time none of the neighbors are strictly better, we’ve found
the global optimum.

The variations of the simplex algorithm lie in the choice of vertex. We could choose
the first one we see (to avoid enumerating them all), we could choose randomly (to
avoid getting stuck on multiple runs), and we could even just choose the best (though
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then we pay the price of enumeration). There are many different heuristics for this
algorithm, each with their own tradeoffs.

5.2.5 Invalid LPs

Some linear programs will be infeasible, having no feasible region; this is dependent
only on the constraints. Others will be unbounded, where the maximum objective
function increases indefinitely; this is dependent only on the objective function.

Feasibility Determining feasibility can be done by introducing a new unrestricted
variable z that we introduce into our constraints:

from: a1x1 + . . .+ anxn ≤ b

to: a1x1 + . . .+ anxn + z ≤ b

Satisfying this is trivial with a small-enough z (so z ; −∞). However, if we could
find a z ≥ 0 that satisfies the new constraint, then the original LP is feasible. We do
this by actually running maximization on a new LP:

Objective
Function:

max[z]

Subject to:
Ax + z ≤ b

x ≥ 0

Checking z ≥ 0 tests feasibility and gives us a starting point for the simplex algorithm
on the original LP.

Unbounded Determining whether or not a linear program is unbounded depends
on its dual LP (discussed next). Specifically, we’ll see that Corollary 5.3.2 tells us
that if an LP’s dual linear program is infeasible (which we can determine easily as we
just showed), then the original is either unbounded or infeasible.

5.3 Duality

Suppose someone gives us a value for the objective function and claims that it’sr the
global optimum for its LP. Can we verify this?

Consider a simple fact: the maximum objective function value is the same for any
linear combination of the constraints. For example, let’s work through this LP for
which the known optimum is x∗ =

[
x1 x2 x3

]
=
[
200 200 100

]
:
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Objective
Function:

max[x1 + 6x2 + 10x3]

Subject to:

x1 ≤ 300 1○
x2 ≤ 200 2○

x1 + 3x2 + 2x3 ≤ 1000 3○
x3 + 3x3 ≤ 500 4○
x1, x2, x3 ≥ 0

Now let’s let y =
[
y1 y2 y3 y4

]
=
[
0 1

3
1 8

3

]
and consider the linear combination

of the constraints, not worrying about how y was determined just yet.

(y1 · 1○) + (y2 · 2○) + (y3 · 3○) + (y4 · 4○) ≤ 300y1 + 200y2 + 1000y3 + 500y4

x1y1 + x2y2 + x1y3 + 3x2y3 + 2x3y3 + x2y4 + 3x3y4 ≤
x1(y1 + y3) + x2(y2 + 3y3 + y4) + x3(2y3 + 3y4) ≤

x1 + 6x2 + 10x3 ≤
200

3
+ 1000 +

8 · 500

3
≤ 2400

after plugging in y

This is exactly the upper bound found by the optimum shown above: x1 + 6x2 + 10x3
comes out to 2400 when applying x∗.

How would we find this y knowing the optimum? Well, the goal was to find a y such
that the right hand side of the equation is at least as big as the optimum. This is the
same thing as saying we want the left-hand side to be at least as big as the objective
function. The left side:

x1(y1 + y3) + x2(y2 + 3y3 + y4) + x3(2y3 + 3y4) ≥ x1 + 6x2 + 10x3

translates to a new set of constraints:

y1 + y3 ≥ 1

y2 + 3y3 + y4 ≥ 6

2y3 + 3y4 ≥ 10

Any y satisfying these constraints will be an upper bound (though not necessarily the
smallest upper bound) on the objective function. Thus, minimizing the right-hand
size will give us the smallest upper bound:

min
y

[300y1 + 200y2 + 1000y3 + 500y4]

Kudrayvtsev 75



ku
dra

yv
tse

v
CHAPTER 5: Linear Programming

This is LP-duality: the maximization of the original objective function directly cor-
responds to the minimization of a new objective function based on the right-hand
size of the constraints.

More abstractly, when given a primal LP with n variables and m constraints in the
canonical Standard Form:

Objective
Function:

max cTx

Subject to:
Ax ≤ b

x ≥ 0

The corresponding dual LP results in a minimization onm variables and n constraints:

Objective
Function:

minbTy

Subject to:
ATy ≥ c

y ≥ 0

where y describes the linear combination of the original constraints.

Example 5.1: Finding the Dual LP

Given the following linear program:

Objective
Function:

max[5x1 − 7x2 + 2x3]

Subject to:
x1 + x2 − 4x3 ≤ 1

2x1 − x2 ≥ 3x1, x2, x3 ≥ 0

What’s the dual LP?

We can solve this without thinking much by forming all of the matrices and
vectors necessary and simply following the pattern described above.

First, we need to transform the first constraint to follow standard form.
This is trivial algebra: multiplying an inequality by a negative flips the
sign. This gives us:

−1× (2x1 − x2) ≥ −1× 3⇐⇒ −2x1 + x2 ≤ −3
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Now, just fill in the blanks:

c =
[
5 −7 2

]
A =

[
1 1 −4
−2 1 0

]
b =

[
1 −3

]
And transform them into our new LP:

minbTy =⇒ min[y1 − 3y2]

ATy ≥ c =⇒


y1 − 2y2 ≥ 5

y1 + y2 ≥ −7

−4y1 ≥ 2

y ≥ 0

An immediate consequence of the way we formed the dual LP is the weak duality
theorem.

Theorem 5.1 (Weak Duality). Any feasible x for a primal LP is upper bounded
by any feasible y for the corresponding dual LP:

cTx ≤ bTy

We used this theorem when we were proving the Max-Flow = Min-Cut Theorem. It
leads to a number of useful corollaries.

Corollary 5.3.1. If there exists a feasible x and feasible y that satisfy
Theorem 5.1 more strictly:

cTx = bTy

then these points are optima for their respective LPs.

Corollary 5.3.2. If the primal LP is unbounded, then the dual LP
is infeasible. Similarly, if the dual LP is unbounded, then its corre-
sponding primal LP is infeasible.

This latter corollary is one-way: it’s still possible to have situations in which both
the primal and the dual LPs are infeasible. As we’ve already alluded, this corollary
is critical in identifying Invalid LPs. Specifically, we determine whether or not an LP
is unbounded by checking the feasability of its dual.

Kudrayvtsev 77



ku
dra

yv
tse

v
CHAPTER 5: Linear Programming

Now, do the optima described in 5.3.1 always exist? This is answered by the strong
duality theorem.

Theorem 5.2 (Strong Duality). A primal LP has an optimal x∗ if and only if
its dual LP has an optimal y∗. These satisfy Corollary 5.3.2:

cTx = bTy

Secondarily, these exist if and only if their corresponding LP is both feasible
and bounded.

5.4 Max SAT

Recall tackling SATisfiability problems in our discussion of graphs in chapter 3.

Satisfiability:

Input: A Boolean formula f in conjunctive normal form with n variables
and m clauses.

Output: An assignment satisfying f or an indication that f is not satisfi-
able.

We established that while 2-SAT can be solved in polynomial time with connected
components, SAT is np-complete. The Max-SAT problem is an alternative construc-
tion that does not require full satisfiability; instead, we try to maximize the number
of satisfied clusters.

Max-SAT:

Input: A Boolean formula f in conjunctive normal form with n variables
and m clauses.

Output: An assignment that maximizes the number of satisfied clauses in
f .

This version of the problem is np-hard: though it’s at least as hard as the full SAT
problem, we no longer have an easy way to check if the solution truly is the maximum.
Instead, we will provide an approximate solution to the problem. Specifically, if m∗
is the solution to Max-SAT, we’re going to find an assignment that guarantees some
portion of m∗.

5.4.1 Simple Scheme

For the first pass, we’re going to guarantee an assignment that satisfies 1
2
m∗ clauses.

Consider f as we’ve defined it with n variables {x1, . . . , xn} andm clauses {c1, . . . , cm}.
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The approach is incredibly simple: we assign each xi to true or false randomly with
equal probability for all n variables. Suppose W denotes the number of satisfied
clauses, and it’s expressed as the sum of a bunch of wjs that denote whether or not
the corresponding cj clause has been satisfied. Then, the expectation (or average)
value of W is, by definition:

E[W ] =
m∑
`=0

` · Pr [W = `] definition of expectation

= E

[
m∑
j=1

wj

]
=

m∑
j=1

E [wj] linearity of expectation

=
m∑
j=1

Pr [wj = 1] since ` = 0 when wj = 0

=
m∑
j=1

(1− 2−k)
where k is the number of variables in

the clause, since only a single xi needs
to be set to true

≥
m∑
j=1

1

2
≥ m

2
since k ≥ 1

Thus, just guessing a random value is a randomized algorithm that satisfies at least
1/2 of the maximum satisfiable clauses.

Notice that this lower bound is not dependent on k; this is for simplicity of calculation—
k varies for each clause. What if we considered Max-Ek-SAT, in which every clause
is exactly of size k? Then we simply have a (1− 2−k) approximation.

It was proved that for the case of Max-3-SAT, it’s np-hard to do any bet-
ter than a 7/8 approximation (that is, when doing our simple algorithm of
random assignment).

5.5 Integer Linear Programming

The structure for an integer linear program is the same as with a normal linear
program, except x, the point maximizing the objective function, is restricted to be
only integral:

Objective
Function:

max[cTx]

Subject to:

Ax ≤ b

x ≥ 0

x ∈ Zn
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5.5.1 ILP is np-Hard

Many problems can be reduced to integer linear programming. While LPs are in the
p complexity class, ILP is np-hard; we’ll prove this by reducing the Max-SAT from
earlier to an ILP. Since Max-SAT is np-hard, ILP must be also.

Take the input f from Max-SAT (the CNF Boolean function) and craft an ILP as
follows:

• For each variable xi ∈ f , we set yi = xi in the ILP.

• For each clause cj, add a zj indicating satisfiability.

How do we express this? Well, given some cj = (xa ∨ xb ∨ xc), we want zj = 0
if all of the xis are 0, right? So just sum them up! In general,

zj ≤ ya + yb + . . .

However, this doesn’t work for clauses with complements, like cj = (xa∨xb∨xc),
since zj = 0 despite ya = 1. To alleviate this, we look at the complement as
well:

zj ≤ (1− ya) + (1− yb) + . . .

Given this translation from f to the ILP, we now want to maximize the number of
satisfied clauses:

Objective
Function:

max

[
m∑
j=1

zj

]

Subject to: For all i = 1, . . . , n: 0 ≤ yi ≤ 1.
For all j = 1, . . . ,m: 0 ≤ zj ≤ 1.
Then, both the positive and complementary versions of
yi should be summed:

∑
i∈C+

j

yi +
∑
i∈C−j

(1− yi) ≥ zj

Finally, yi, zj ∈ Z.

Given this reduction and given the fact that Max-SAT is known to be np-hard, ILP
must also be np-hard.

Udacity ‘18 We can relax the integer restriction to find some y∗ and z∗ that essentially define an
upper bound on m∗, the maximum number of satisfiable clauses in f .the proof is

omitted for
brevity

By rounding
said solutions, we can find a feasible point in the ILP that is not far off from the true
optimal. In fact, we can prove that this results in a

(
1− 1

e

)
m∗ approximation (where

e is the exponential, e ≈ 2.718 . . .) of Max-SAT.
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This technique is a common approach in approximating something is np-hard: reduce
it to an ILP, approximate it with an LP, then run a randomized approximation
algorithm that (hopefully) results in a close approximation.

The approximate LP-based approach described above scales quite well with k when
applied to the exactly-k SAT problem:

k Simple LP-Based
1 1/2 1
2 3/4 3/4

3 7/8 1− (2/3)3 ≈ 0.704
. . .

k 1− 2−k 1−
(
1− 1

k

)k
Notice that we can always get at least a 3/4ths approximation. This leads to a simple
algorithm where we simply take the better of the simple vs. LP-based scheme to
always get 3

4
m∗.
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(or, p ?

= np)

If p = np, then the world would be a profoundly different place
than we usually assume it to be. There would be no special value
in ‘creative leaps,’ no fundamental gap between solving a prob-
lem and recognizing the solution once it’s found. Everyone who
could appreciate a symphony would be Mozart; everyone who
could follow a step-by-step argument would be Gauss; everyone
who could recognize a good investment strategy would be Warren
Buffett.

— Scott Anderson, complexity researcher

T he purpose of finding a problem’s computational complexity class is to de-
termine whether or not a problem is intractable, meaning it’s unlikely to be

solvable efficiently. We define “efficiently” as “within polynomial time.”

We will define np as being the complexity class of all search problems. Roughly,
a search problem is one where we can efficiently verify solutions. Given an input
problem and a proposed solution, it should be easy (i.e. doable in polynomial time)
to verify whether or not that solution is correct.

This leads to the p complexity class, which includes only search problems that are
solvable in polynomial time. Thus, p ⊂ np.

The notion of p ?
= np is a way of asking whether or not solving a problem is equivalent

to verifying a solution. Intuitively, it seems much more difficult to generate a proof
or solution for a problem than to verify its correctness.

Terminology Obviously, p stands for polynomial time. Paradoxically, np does
not stand for non-polynomial time; instead np specifies non-deterministic polynomial
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time. This is the set of problems that can be solved in polynomial time on a non-
deterministic machine—one that is allowed to guess at each step. The idk man, this

won’t come up
again

rough idea is
that there is some choice of guesses that can lead to a polynomial solution, so if you
could perform all of the guesses simultaneously, you could find the correct answer.

6.1 Search Problems

Formally, problems within np are defined in the following way:

Search problem:

Form: Given an instance I, we can find a solution S for I if one exists, or
indicate that there is no solution.

Requirement: To be a search problem, given an instance I and any solution
S (not necessarily one given by an algorithm), it must be verifiable that S
is a solution to I in time polynomial in |I|.

The way to show the above requirement is to provide a verifier algorithm V (I, S) that
provably fulfills it.

6.1.1 Example: SAT

Recall the structure of the SAT problem.

SAT:

Input: A Boolean formula f in CNF with n variables and m clauses.

Output: A satisfying assignment—if one exists—or “no” otherwise.

A proposed solution is obviously trivial to verify in polynomial time: simply assign
each xi accordingly and run through each clause once to check if it’s satisfied. In the
worst case, this takes O(mn) time, since each of the m clauses needs to be checked
once, and each clause has (at most) 2n literals. This means SAT ∈ np. �

6.1.2 Example: k-Coloring Problem

The k-color problem is well known in computer science. Given a graph and a palette
with k colors, you must find a way to label each node with one of the colors such that
no neighboring nodes share a color. For example, the following is a valid 3-coloring
of the graph:
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Finding the coloring is hard, but verifying it is easy: given a graph G and a coloring,
we simply need to check that each edge has different colors on each endpoint. Thus,
k-coloring is ∈ np. �

6.1.3 Example: MSTs

Recall the problem of finding the minimum spanning tree:

MST:

Input: A graph G = (V,E) with positive edge lengths.

Output: A tree T with minimum weight.

This problem is both within np and p: this is simply because finding an MST takes
polynomial time (recall Kruskal’s algorithm). We can verify that a given T is a tree
with depth-first search (no back edges), then check if T has the same weight as the
output of Kruskal’s (or Prim’s) algorithm. This means MST ∈ np and MST ∈ p.

6.1.4 Example: Knapsack

Recall the knapsack problem from dynamic programming.

Knapsack:

Input: A set of n objects with values and weights:
V = {v1, v2, . . . , vn}
W = {w1, w2, . . . , wn}

A total capacity B.

Output: A subset S that both:
(a) maximizes the total value: max

S∈B

∑
i∈S

vi

(b) while fitting in the knapsack:
∑
i∈S

wi ≤ B

Given an instance of the problem and a solution, checking whether or not it fits within
the capacity is easy, taking O(n) time. What about checking its optimality? The
only way to do this is by actually solving the problem and comparing the total value.
Recall, though, that unlike in the MST case above, the running time for knapsack
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was O(nB). This is not polynomial, since |I| = (n, log2B).

Our conclusion is thus that generic knapsack not known to be in np: there may exist
a better algorithm to find or verify the solution. Since we can’t know for sure that

there isn’t, we can’t definitively say if knapsack
?
∈ np.

Variant: Knapsack Search

We can consider a variant of knapsack in which we drop the maximization requirement
and instead add a new input parameter: a goal, g. Then, the algorithm tries to find
a subset of values that meet the goal.

Knapsack Search:

Input: A set of n objects with values and weights:
V = {v1, v2, . . . , vn}
W = {w1, w2, . . . , wn}

A total capacity B.
A goal, g.

Output: A subset S that both:
(a) meets the goal:

∑
i∈S

vi ≥ g

(b) while fitting in the knapsack:
∑
i∈S

wi ≤ B

This is clearly in np: checking that it meets the goal involves summing up the values,
O(n) time.

6.2 Differentiating Complexities

Complexity Zoo,
YouTube ‘14

We do not know if p 6= np, but the debate comes down to a single distillable point:

Does being able to recognize correct answers quickly mean that there’s also a
quick way to find them?

We can assume p 6= np in order to differentiate between problems within np. The
intractable problems within np are called np-complete problems. This means that
if any np-complete problem can be solved in polynomial time, then all problems in
np can be solved in polynomial time.

In essence, any problem that is np-complete can be “reduced” (or, more accurately,
“transformed”) into any other. This means that if we can find a polynomial-time
solution for SAT, we can use it as a black box to solve any np problem.
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Can we show this transformation? Namely, can we show that literally any problem
within np (including problems in p) can be reduced to solving SAT? This involves a
bidirectional proof:

• Suppose f(G, k) is a function that transforms the input from the k-coloring
problem to an SAT input.

• Also suppose that h(S) is a function that transforms the output from SAT into
an output for the k-coloring problem.

• Then, we need to show that if S is a solution to SAT, then h(S) is a solution
to k-color.

• Similarly, we need to show that there are no solutions to the SAT that do not
map to a solution to k-color. In other words, if SAT says “no,” then k-color also
correctly outputs “no”.

We need to do this for every problem within np, which seems insurmountable. It is in
fact the case, though (see Figure 6.1, later), and this might come intuitively: SAT is
just a Boolean circuit and at the end of the day, so is a computer, so any algorithmic
problem that can be solved with a computer can be solved with SAT.

Reducing from any problem to SAT is different than demonstrating that a particular
problem is np-complete, though. This latter proof is done with a reduction: given
any known np-complete problem (like SAT), if we can reduce from said problem
to the new problem (like, for example, the independent set problem), then the new
problem must also be np-complete.

6.3 Reductions

Cook ‘71
Levin ‘71
Karp ‘72

We’ll enumerate a number of reductions to prove various algorithms as np-complete.
Critically, we will take the theorem that SAT is np-complete for granted as a starting
point, but you can refer to the papers linked in the margin if you’re a masochist and
want to figure out why that’s the case.

6.3.1 3SAT from SAT

The difference between 3SAT and SAT is that in the former, each clause is limited
to having at most 3 literals. To show that 3SAT is np-complete, we first show that
3SAT ∈ np; then, we find a reduction from SAT to 3SAT:

SAT
known to be
np-complete

3SAT
complexity

class unknown

?
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Within np Verifying the solution for 3SAT is just as easy as for SAT, in fact only
taking O(m) time since n ≤ 3.

Reduction Because of the similarity in the problems, forming the reduction is fairly
straightforward. A given long SAT clause c can be transformed into a series of 3-literal
clauses by introducing k − 3 new auxiliary variables that form k − 2 new clauses:

(x1 ∨ x2 ∨ . . . ∨ xk) =⇒ (xi ∨ xi+1 ∨ y1) ∧ (y1 ∨ xi+3 ∨ y2) ∧
(y2 ∨ xi+4 ∨ y3) ∧ . . .∧
(yk−4 ∨ xi+4 ∨ yk−3) ∧ (yk−3 ∨ xk−1 ∨ xk)

For example, the following 5-SAT is transformed as follows:

C = (x2 ∨ x3 ∨ x1 ∨ x4 ∨ x5)
C ′ = (x2 ∨ x3 ∨ y) ∧ (y ∨ x1 ∨ z) ∧ (z ∨ x4 ∨ x5)
C ⇐⇒ C ′

The bidirectional proof of correctness can be done by contradiction.

3SAT: More Restrictions

There’s an important note in Algorithms that isn’t highlighted in lecture
that further stipulates that a restricted version of 3SAT in which variables
can only appear in ≤ 3 clauses is still np-complete (see pp. 251 for the
transformation).

6.3.2 Independent Sets

The subset of vertices S ⊂ V is an independent set if no edges are contained in S;
in other words, ∀x, y ∈ S : (x, y) /∈ E. Finding small independent sets is easy; finding
large, or the largest independent set is difficult.

Maximum Independent Set:

Input: An undirected graph, G = (V,E).

Output: The independent set S of maximum size.

This problem is not known to be ∈ np: the only way to check the validity of a solution
to the problem is by solving it, and no polynomial-time algorithm for solving it is
known.

Much like we adapted knapsack to be np-complete (see subsection 6.1.4), we can
adapt the independent set problem to be np-complete by adding a goal input g.
Then, the solution’s validity becomes trivial to check.
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Independent Set Search:

Input: An undirected graph, G = (V,E).
A goal g.

Output: The independent set S with size |S| ≥ g, if one exists.

Now, we’ll prove that the independent set problem is np-complete with a reduction
from 3SAT.

3SAT
known to be
np-complete

Independent
Set

complexity
class unknown

?

Construction

Consider again the 3SAT scenario: there’s an input f with variables x1, . . . , xn and
clauses c1, . . . , cm where each clause has at most 3 literals. We’ll define our graph G
with the goal matching the number of clauses: g = m. Then, for each each clause ci
in the graph, we’ll create |ci| vertices (the number of literals).

x3 x2

x1

Clause Edges We encode a particular clause as a subgraph
by fully connecting its literals. So, for example, the clause c =
(x1 ∨ x3 ∨ x2) is encoded as shown on the right.

By construction, the resulting independent set S has at most 1
vertex per clause, and since g = m, the solution has exactly 1
vertex per clause.

x3 x2

x1

x4 x5

x1

Variable Edges In order to prevent the SAT assignment from
creating contradictions, we need to also add edges between any
variable and its complement. For example, given the following
f :

f(x1..5) = (x1 ∨ x3 ∨ x2) ∧ (x4 ∨ x5) ∧ (x1)

we would craft the graph on the right, in which the solid edges
are the clause edges we just defined and the dashed edge is the
new variable edge.

Correctness

Given this formulation, we need to prove correctness in both directions. Namely, we
need to show that if f has a satisfying assignment, then G has an independent set
whose size meets the goal, and vice-versa.
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Forward Direction We know that we start with an assignment that satisfies f .
For each clause c, then, at least one vertex in its corresponding subgraph is set to
true; add exactly one of the vertices to the independent set. Since there arem clauses,
we get |S| = m = g and fulfill our goal. �

Notice that if the chosen vertex has a variable edge, then by definition its corre-
sponding edge cannot be chosen (this would cause a contradiction in f ’s assignment).
Similarly, we did not include any clause edges by definition.

Backward Direction This time, we start with an independent set of G of at least
size g. Since each clause’s subgraph is fully connected, the independent set must
contain no more than 1 vertex per clause. And since there are at least g vertices,
each clause must have a vertex. By setting the vertices’ literals to be true within f ,
we satisfy it. �

We’ve now shown the equivalence between 3SAT and IS and hence proven that the
independent set problem is np-complete.

Maximum Independent Set

Remember that we discovered that the Max-IS problem is not ∈ np. Furthermore,
it’s easy to reduce the IS problem to the Max-IS problem: if we find the maximum

m∗, we just check if it’s bigger than the goal, m∗
?

≥ g. This means that we can reduce
any problem in np to Max-IS (either by reducing through IS or directly), but Max-IS
itself is outside of np.

To denote that Max-IS is at least as hard as anything in np, but we can’t say whether
Max-IS is np-complete itself, we say that it is np-hard. In summary, by difficulty
we say that p ≤ np-complete ≤ np-hard.

6.3.3 Cliques

A clique (pronounced “klEEk” like “freak”) is a fully-connected subgraph. Specifically,
for a graph G = (V,E), a subset S ⊆ V is a clique if ∀x, y ∈ S : (x, y) ∈ E.

Much like with independent sets, the difficulty lies in finding big cliques, since things
like a single vertex are trivially cliques.

Clique Search:

Input: A graph G = (V,E) and a goal, g.

Output: A subset of vertices, S ⊆ V where S is a clique whose size meets
the goal, so |S| ≥ g.

Checking that S is fully-connected takes O(n2) time, and checking that |S| ≥ g takes
O(n) time, so clique problem is np. It’s also np-complete: we can prove that this by
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a reduction from the independent set problem.

The key idea behind the reduction is that these problems are basically polar opposites:
in a clique, there’s a full set of edges within S; in an independent set, there are no
edges within S.

The “opposite” of a graph G = (V,E) is a graph such that all of its edges are edges
that weren’t in G. In other words, G = (V,E) where E = {(x, y) : (x, y) /∈ E}. By
definition, then, S is a clique in G if and only if S is an independent set in G.

Given an input G = (V,E) and a goal g for the IS problem, we form G as above
and leave g as inputs to the clique problem. If S is a solution for the clique problem,
return it as the solution for the IS problem.

6.3.4 Vertex Cover

A subset of vertices is a vertex cover if it covers every edge. Specifically, for G =
(V,E), S ⊆ V is a vertex cover if ∀(u, v) ∈ E : v ∈ S ∨ u ∈ S. For example, the filled
vertices below present a vertex cover of the graph:

Notice that every edge has at least one filled vertex. Finding a large vertex cover
is easy, but finding the smallest one is hard. The np-complete version of the vertex
cover problem is as follows:

Vertex Cover:

Input: A graph, G = (V,E) and a budget, b.

Output: A set of vertices S ⊂ V that form a vertex cover with a size that
is under-budget, so |S| ≤ b.

Just to reaffirm, ensuring that a solution to the vertex cover problem is valid can be
done in polynomial time: simply check to see if either u ∈ S or v ∈ S for every edge
(u, v) ∈ E, and check that S is under-budget.

Key idea: S will be a vertex cover if and only if S (the remaining vertices, so
S = V \ S) is an independent set.

Forward Direction For every edge, at least one of the vertices will be in S by
definition of a valid vertex cover. This means that no more than one vertex for any
edge will be in S; thus, S has no edges which is an independent set by definition.
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Reverse Direction The rationale is almost exactly the same. Given an indepen-
dent set, we know that every edge in the graph, only one of the vertices will belong
to S by definition. Thus, at least one will belong to S which is a vertex cover by
definition.

The reduction from the independent set problem to the vertex cover problem is then
crystal clear: given the graph G = (V,E) and goal g, let b = |V | − g and run the
vertex cover problem to get the solution S. By our above-proved claim, the solution
to the IS problem is thus S. �

6.3.5 Subset Sum

The goal of the subset sum problem is to find some combination of integer values that
sum up to another particular value. This is somewhat reminscent of the knapsack
problem, but without weights and with an exact goal. In fact, once we’ve shown that
this problem is np-complete with a reduction from 3SAT, it will be simple to show
that knapsack is also np-complete.

Subset Sum:

Input: A set of positive integers, {a1, . . . , an} and a goal total, t.

Output: A subset S ⊆ {1, . . . , n} such that
∑
i∈S

ai = t.

This problem can be solved in O(nt) time with dynamic programming, but this is not
a polynomial solution in the input size; it would need to be in terms of log2 t instead.

Validating that the subset sum problem is ∈ np is straightforward: computing the
sum takes O(n log t) time, since each number uses at most log t bits.

Construction

The reduction from 3SAT is rather clever and more-involved. The input to our subset
sum will be 2n+ 2m+ 1 positive integers, where n is the number of variables in the
3SAT problem, m is the number of clauses, and the final +1 will represent the total.
Specifically,

v1, v
′
1, v2, v

′
2, . . . , vn, v

′
n︸ ︷︷ ︸

subset sum

⇐⇒ x1, x1, x2, x2, . . . , xn, xn︸ ︷︷ ︸
3SAT literals

s1, s
′
1, s2, s

′
2, . . . , sn, s

′
n︸ ︷︷ ︸

subset sum

⇐⇒ c1, c2, . . . , cm︸ ︷︷ ︸
3SAT clauses

t︸︷︷︸
desired total

These numbers will all be ≤ n + m digits long in base ten; these are huge values:
t ≈ 10n+m.
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Valid Assignment As described above, vi corresponds to xi = T , while v′i corre-
sponds to xi = F (or xi = T ). Now obviously only one of these can be true, so we
need to ensure that only one of them ends up in the final subset S. This is done as
follows: the ith digit of vi, v′i, and t we put a 1 while all other numbers (that is, the
other vjs, etc. for i 6= j) the ith digit has a zero. This means that for t (the desired
total) to have its ith digit set to one in the actual total, either vi or v′i need to be ∈ S:
if they both are, the digit is 2; if neither are, the digit is 0.

Overall correctness aside, this construction at least ensures logical consistency: either
vi (meaning xi is true) xor v′i (meaning xi is false) will end up in the final subset.

x1 x2 x3 c1 c2 c3 c4
v1 1 0 0
v′1 1 0 0
v2 0 1 0
v′2 0 1 0
v3 0 0 1
v′3 0 0 1
s1 0 0 0
s′1 0 0 0
s2 0 0 0
s′2 0 0 0
s3 0 0 0
s′3 0 0 0
s4 0 0 0
s′4 0 0 0
t 1 1 1

x1 x2 x3 c1 c2 c3 c4
v1 1 0 0 0 0 1 1
v′1 1 0 0 1 1 0 0
v2 0 1 0 0 0 0 1
v′2 0 1 0 1 1 1 0
v3 0 0 1 0 1 1 0
v′3 0 0 1 1 0 0 0
s1 0 0 0
s′1 0 0 0
s2 0 0 0
s′2 0 0 0
s3 0 0 0
s′3 0 0 0
s4 0 0 0
s′4 0 0 0
t 1 1 1 3 3 3 3

To visualize this, consider the following
3SAT problem and its corresponding table
on the right:

f = (x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x2) (6.1)

Note that each row is an entire number
(e.g. some ai input to the subset sum prob-
lem), but broken down by digit.

Satisfying Assignment This ensures
that the sum corresponds to a valid assign-
ment, but now we need to ensure that it’s
a satisfying assignment. For this, we’ll use
the remaining digits. A particular variable
can only be within a clause once, and it
makes no sense to combine it with its com-
plement; in other words, either xi ∈ cj or
xi ∈ cj (or neither), but not both.

With that in mind, we do a similar assign-
ment to each digit for each clause: if xi ∈ cj,
put a 1 in digit n+ j for vi, while if xi ∈ cj,
put a 1 in digit n+ j for v′i.

However, t should allow any combination
of the variables to satisfy a clause, so its
corresponding n+ j digit will be 3.

But what if, say, only x1 satisfies c1? This is
what we need the sis for: they act as buffer
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x1 x2 x3 c1 c2 c3 c4
v1 1 0 0 0 0 1 1
v′1 1 0 0 1 1 0 0
v2 0 1 0 0 0 0 1
v′2 0 1 0 1 1 1 0
v3 0 0 1 0 1 1 0
v′3 0 0 1 1 0 0 0
s1 0 0 0 1 0 0 0
s′1 0 0 0 1 0 0 0
s2 0 0 0 0 1 0 0
s′2 0 0 0 0 1 0 0
s3 0 0 0 0 0 1 0
s′3 0 0 0 0 0 1 0
s4 0 0 0 0 0 0 1
s′4 0 0 0 0 0 0 1
t 1 1 1 3 3 3 3

Table 6.1: The final per-digit breakdown of the input to the subset sum problem
to find a satisfying assignment to the example Boolean 3SAT formula in (6.1).

variables to bump up the total to match t. Notice that the buffer alone is insufficient
to achieve the total, so at least one of the literals must be satisfied. The final per-digit
breakdown is in Table 6.1.

Correctness

Okay that’s all well and good, but are we sure it works? Let’s demonstrate that:

subset sum
has a solution ⇐⇒ 3SAT f is

satisfiable

Forward Direction Given a solution S to the subset sum, we look at each digit
i ∈ [1, n]. These correspond to the n variables: to have the ith digit be 1, we needed
to have included either vi xor v′i by definition. Thus, if vi ∈ S, assign xi = T , whereas
if v′i ∈ S, assign xi = F .

This assigns all of the variables in f , but does it satisfy it?

Is some clause cj satisfied? Well, look at the (n + j)th digit of t where j ∈ [1,m]: it
must be three (by construction). This means that exactly three values were chosen.
Remember that sj and s′j were “free” buffer values, so we know that at least one of
the literals in the clause cj must also have been chosen.

We prevented conflicting assignments in the previous section, so if vi ∈ cj and vi ∈ S,
then vi was also chosen for the (n + j)th digit (and vice-versa for v′i). Thus, each
clause must be satisfied.
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Reverse Direction The logic for the reverse direction is almost identical to the
construction of the problem itself.

If we have a satisfying assignment for f , then for every variable xi: if xi = T then
include vi ∈ S, whereas if xi = F then include v′i ∈ S. This satisfies the ith digit of t
being 1.

Then, for each clause, include the satisfied literals in S and buffer accordingly; for
example, if you had cj = (x1∨x2) and the assignment was x1 = x2 = F , then include
v′2 and both sj, s′j. This satisfies the (n+ j)th digit being 3. �

6.3.6 Summary

Figure 6.1: A hierarchical diagram of the np-complete reductions.

In general to prove that a particular problem is np-complete, we need to prove two
separate things:

1. First, we need to prove that said problem is ∈ np. To reiterate, this means that
any solution to the problem can be verified in polynomial time.

2. Then, we need to reduce a known np-complete problem to the new problem:

known
np-complete
problem

−→ new
problem

Namely, we need to be able to transform inputs to the known problem to inputs
to the new problem.

This involves a bidirectional proof of correctness, as we’ve seen: given the so-
lution to the known problem, we can formulate a solution to the new problem,
and vice-versa.
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6.4 Undecidability

A problem Turing ‘36that is undecidable is one that is impossible to construct an algorithm
for. One such problem is Alan Turing’s halting problem.

Halting Problem:

Input: A program P (in any language) with an input I.

Output: “Yes” if P (I) ever terminates, and “no” otherwise.

The proof is essentially done by contradiction: if such a program exists, can it de-
termine when it would terminate? Suppose Terminator(P, I) is an algorithm that
solves the halting problem. Now, let’s define a new program JohnConnor(J) that
performs a very simple sequence of operations: if Terminator(J, J) returns “yes,”
loop again and terminate otherwise.

There are two cases, then:

• If Terminator(J, J) returns “yes,” that means J(J) terminates. In this case,
JohnConnor(·) will continue to execute.

• If it doesn’t, then we know that J(J) never terminates, so JohnConnor(·)
stops running.

So what happens when we call JohnConnor(JohnConnor)?

• If Terminator(JohnConnor, JohnConnor) returns “yes,” that means John-
Connor(JohnConnor) terminates. But then the very function we called—
JohnConnor(JohnConnor)—will continue to execute by definition. This con-
tradicts the output of Terminator().

• If Terminator(JohnConnor, JohnConnor) returns “no,” then that means
JohnConnor(JohnConnor) never terminates, but then it immediately does. . .

In both cases, we end up with a paradoxical contradiction. Therefore, the only valid
explanation is that the function Terminator() cannot exist. The halting problem
is undecidable. �
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Additional Assignments

T his part of the guide is dedicated to walking through selected problems from
the homework assignments for U.C. Berkeley’s CS170 (Efficient Algorithms and

Intractable Problems) which uses the same textbook. I specifically reference the as-
signments from spring of 2016 because that’s the last time Dr. Umesh Vazirani (an
author of the textbook, Algorithms) appears to have taught the class. Though the
course follows a different path through the curriculum, I believe the rigor of the as-
signments will help greatly in overall understanding of the topic. I’ll try to replicate
the questions that I walk through here; typically, the problems themselves are heavily
inspired by the exercises in Algorithms itself.

Furthermore, and possibly more usefully-so, I also solve many problems in the Algo-
rithms textbook itself. Variations of these problems come up often on assignments
and exams in algorithms courses, so working through them, understanding them, and
memorizing the techniques involved is essential to success.

Contents

7 Homework #0 97

8 Homework #1 100

9 Divide & Conquer (DPV Ch. 2) 104

10 Reductions (DPV Ch. 8) 107
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T his diagnostic assignment comes from the course rather than CS170’s curriculum.
It should be relatively easy to follow by anyone who has taken an algorithms

course before. If it’s not fairly straightforward, I highly recommend putting in extra
prerequisite effort now rather than later to get caught up on the “basics.”

7.1 Problem 1: From Algorithms, Ch. 0

Recall the definition of big-O:

Given two functions, f and g, we can say that f = O(g) if:

∃c ∈ N such that f ≤ c · g

That is, there exists some constant c that makes g always bigger than f .
In essence, f(n) = O(g(n)) is analogous to saying f ≤ g with “big enough”
values for n.

Note that if g = O(f), we can also say f = Ω(g), where Ω is somewhat analogous to
≥. And if both are true (that is, if f = O(g) and f = Ω(g)) then f = Θ(g). With
that in mind. . .

(a) Given

f(n) = 100n+ log n

g(n) = n+ log2 n

we should be able to see, relatively intuitively, that f = Ω(g) , (B). This is the
case because 100n = Θ(n) since the constant can be dropped, but log2 n =
Ω(log n), much like n2 ≥ n.

(b) We’re given

f(n) = n log n

g(n) = 10n log 10n

97
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Since constants are basically irrelevant in big-O notation, it should be self-
evident that f and g are equal with large-enough n, thus f = Θ(g) , (C).

(c) Given

f(n) =
√
n

g(n) = log3 n

we shouldn’t let the exponents confuse us. We are still operating under the
basic big-O principle that logarithms grow slower than polynomials. The plot
clearly reaffirms this intuition; the answer should be f = Ω(g) , (B).

(d) Given

f(n) =
√
n

g(n) = 5logn

there should be no question that f = O(g) , since an exponential will grow
much, much faster than a linear polynomial, and

√
n ≤ n so it continues to

hold there, too.

7.2 Problem 2: Big-Ordering

(a) At first glance, we should be able to identify at least three groups: linear,
logarithmic, and the rest. Note that I will assume all of the logarithms are in
base-2.

In the logarithmic group (that is, f = Θ(log n)) we have:

• log n

• log n2 (remember the power rule for logarithms: log nk = k · log n)

Then, in the linear group f = Θ(n):

• n

• 2n+ 5

Finally, we have the remaining groups which all have one member:

• In the group f = Θ(n log n) we have n log n+ 2019.

• In the groups f = Θ(
√
n), f = Θ(n2.5), f = Θ(2n), and f = Θ(n log2 n) is

the exact member itself.

The order of the groups should be relatively obvious: logarithms, polynomials,
and finally exponentials. Specifically, log n, n log n, n log2 n,

√
n, n, n2.5, 2n.
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(b) We’re asked to prove that

S(n) =
n∑
i=0

ai = 1 + a+ a2 + . . .+ an =
an+1 − 1

a− 1

This result was also used in (8.1) and elaborated-on in this aside as part of
Geometric Growth in a supplemental homework. The proof comes from poly-
nomial long division. The deductions for the big-O of S(n) under the different
a ratios are also included in that problem.
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CS 170:
Homework #1 D on’t forget that in computer science, our logarithms are always in base-2! That

is, log n = log2 n. Also recall the definition of big-O, which we briefly reviewed
for section 7.1

8.1 Compare Growth Rates

I’ll only do a handful of these since they should generally be pretty straightforward
and mostly rely on recalling esoteric algebraic manipulation rules.

(a) Given

f(n) = n
1/2

g(n) = n
2/3

we can determine that f = O(g) because:

f
?

≤ c · g
f

g

?

≤ c

n1/2

n2/3
= n−

1/6 ≤ 1 ∀n ∈ N

That is, there are no natural numbers that would make this fraction 1

n1/6 larger
than c = 1. Note that we don’t actually need this level of rigor; we can also
just say: f = O(g) because it has a smaller exponent.

(b) Given

f(n) = n log n

g(n) = (log n)logn

Considering the fact that g(n) is an exponential while f(n) is a polynomial, we
should intuitively expect f = O(g) . By expanding the logarithm with a quick

100
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undo-redo (that is, by adding in the base-2 no-op), we can make this even more
evident:

g(n) = (log n)logn

= 2log((logn)logn) recall that applying the base
to a logarithm is a no-op, so: blogb x = x

= 2logn·log logn we can now apply the power rule: log xk = k log x

= 2lognlog logn
then the power rule of exponents: xab = (xa)b

= nlog logn and finally undo our first step

Very clearly, nm will grow much faster than some nm.

8.2 Geometric Growth

We need to prove the big-Os of geometric series under all conditions:

k∑
i=0

ci =


Θ(ck) if c > 1

Θ(k) if c = 1

Θ(1) if c < 1

We’ll break this down piece-by-piece. For shorthand, let’s say f(k) =
∑k

i=0 ci.

Case 1: c < 1. Let’s start with the easy case. Our claim f = Θ(1) means:

∃m such that f(k) ≤ m · 1 and
∃n such that f(k) ≥ n · 1

Remember from calculus that an infinite geometric series for these conditions
converges readily:

∞∑
i=0

ci =
1

1− c

This is a hard-cap on our series (since k ≤ ∞), so we can confidently say
that f = O(1) for m = 1

1−c . We also have to show the inverse, too, which is
trivial: just let n = 1. Since the sum can only get bigger with k, the smallest is
f(k = 0) = 1. �

Case 2: c = 1. This case is actually even easier. . . Notice that the series’ sum is
always just k:

f(k) =
k∑
i=0

ci = 1 + 1 + . . .+ 1︸ ︷︷ ︸
k+1 times

= k + 1

meaning our claim of f = Θ(k) is self-evident. �
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Case 3: c > 1. The final case results in an increasing series; the formula for the sum
for k terms is given by:

f(k) =
k∑
i=0

ci =
1− ck+1

1− c
(8.1)

Our claim is that this is capped by f(k) = Θ(ck). We know that obviously the
following holds true:1

ck+1 > ck+1 − 1 > ck

Notice that this implies ck+1−1 = O
(
ck+1

)
, and ck+1−1 = Ω(ck). That’s really

close to what we want to show. . . What if we divided the whole thing by c− 1?

ck+1

c− 1
>
ck+1 − 1

c− 1
>

ck

c− 1

Now notice that the middle term is f(k)! Thus,

c

c− 1
ck > f(k) >

1

c− 1
ck

Meaning it must be the case that f = Θ(ck) because we just showed that it had
ck as both its upper and lower bounds (with different constants m = c

c−1 , n =
1
c−1). �

Quick Maffs: Deriving the geometric summation.

We want to prove (8.1):

f(k) =
k∑
i=0

ci =
1 = −ck+1

1− c

The proof is a simple adaptation of this page for our specific case of i = 0
and a0 = 1. First, note the complete expansion of our summation:

k∑
i=0

ci = 1 + c + c2 + . . . + ck

= ck + ck−1 + . . . + c2 + c + 1 or, more conventionally
for polynomials. . .

1 This is true for k > 0, but if k = 0, then we can show f(0) = Θ(c0) = O(1) just like in Case 2.
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A basic property of polynomials is that dividing xn − 1 by x− 1 gives:

xn − 1

x− 1
= xn−1 + xn−2 + . . . + x2 + x + 1

By reverse-engineering this, we can see that our summation can be the result
of a similar division:

ck+1 − 1

c− 1
= ck + ck−1 + . . . + c2 + c + 1 �

8.3 Recurrence Relations

Refer to Solving Recurrence Relations for an overview.

(a) We can solving some of these using the Master theorem.

(i) T (n) = 3T
(n

4

)
+ 4n

We have d = 1, logb a = log4 3 ≈ 0.79, so the first branch applies: O(n) .

(ii) 45T
(n

3

)
+ 0.1n3

We have d = 3, log3 45 ≈ 3.46, so the third branch applies: O
(
n3.46

)
.

(iii) T (n) = T (n− 1) + cn

For this one, we will need to derive the relation ourselves. Let’s start with
some substitutions to see if we can identify a pattern:

T (n) = T (n− 1) + cn

= T (n− 2) + cn−1︸ ︷︷ ︸
T (n−1)

+ cn

= T (n− 3) + cn−2︸ ︷︷ ︸
T (n−2)

+ cn−1 + cn

= T (n− i) +
i−1∑
j=0

cn−j

Now it’s probably safe to assume that T (1) = O(1), so we can stop at
i = n− 1, meaning we again have a geometric series:

T (n) = O(1) + cn + cn−1 + . . .+ 1

whose complexity we know is O(cn) .2

2 We’re being cheeky here: the biggest case of O(cn) covers all cases of c for a geometric series. It’s
critical to remember the imprecision of O(·) relative to Θ(·)!
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I n this chapter, we provide detailed np-complete reductions for many of the prob-
lems in Chapter 2 of Algorithms by DPV. Each problem clearly denotes where the

solution starts, so you can attempt it yourself without spoilers if you want.

DPV 2.7: Roots of Unity

We want to find the sum and product of an arbitrary nth roots of unity.

Solution The sum can be found by applying the arithmetic series formula:

n−1∑
k=0

ωk = ω0 + ω1 + ω2 + . . .+ ωn−2 + ωn−1

=
1− ωn

1− ω
=

1− 1

1− ω
= 0 recall that wn = 1

The product can be simplified via Euler’s identity:

n−1∑
k=0

ωk = ω0 · ω1 · ω2 · . . . · ωn−2 · ωn−1

= ω
∑n−1
k=0 k = ω

n(n−1)
2

=
(
e
i2π
n

)n(n−1)
2

= e
i2π
n
·n(n−1)

2

= eiπ(n−1) =
(
eiπ
)n−1

= (−1)n−1 Euler’s identity: eiπ = −1

Thus, when n is odd (that is, expressible as a value n = 2x + 1), the roots’ product
is 1:

(−1)n−1 = (−1)(2x+1)−1 = (−1)2x

=
(
(−1)2

)x
= 1x = 1
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Contrarily, when n is even (expressible as n = 2x), the roots’ product is instead −1:

(−1)n−1 = (−1)2x−1 = (−1)2x · (−1)−1

= 1 · −1 = −1

DPV 2.14: Removing Duplicates

Our task is to remove all of the duplicates from an (unsorted) array of n elements in
O(n log n) time.

Solution The duplicates can be removed very easily: since sorting takes O(n log n),
we’re still within the time bounds and can put duplicates adjacent to each other. All
that remains is shifting the array to replace dupes efficiently, which we can do by
tracking a “shift index” that increments as we encounter duplicates. At the end of
the single O(n) pass, all of the dupes will be at the end and we can trim the array
accordingly.

Algorithm 9.1: Removes duplicates from arrays in O(n log n) time.

Input: An array of n integers, A = [x1, x2, . . . , xn].
Result: The array modified in-place with duplicates removed.

A = Sort(A)
m = A[0]
s = 0
foreach i ∈ [2, n] do

if A[i] == m then
s += 1

else
A[i− s] = n

end
m = n

end
return A1..n−s /* all but the last s values */

DPV 2.17: Matching Indices

In this problem, we want to determine whether or not an A[i] = i exists in a sorted,
n-length array of unique integers: A = [x1, x2, . . . , xn]. Our D&C algorithm should
do this in O(log n) time.

Solution The expected running time should tell us that something akin to binary
search will be required. Let’s break this down: if we start the first step of binary
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search, we’ll be looking at some A
[
m = n

2

]
(assume we round up). Now if xm > n/2

(that is, the middle element is bigger than half of the array’s length), that means
all elements to the right of xm couldn’t possibly match their index. For example, if
we have xm=3 = 10 and n = 5, then there’s no way the latter elements would ever
be 4 or 5; by definition, they must be ≥ 10. However, we may still have x1 = 1 or
x2 = 2. This means we can disregard the right half and conquer the left half, instead.
But wait, isn’t it possible for some, like, x100 = 100? No, because the elements are
unique: thus, x100 must be at least xm + (100−m) (that is, it must have grown by
at least 100−m steps).

We can apply this same rationale to the left half: if xm < n/2, then it’s impossible for
any element to match its index, since they must decrease from xm by at least 1 each
time.

Without the uniqueness constraint, this wouldn’t be possible to D&C (I think). By
the Master theorem, since we do constant work at each step and halve each time, we
get the expected running time:

T (n) = T
(n

2

)
+O(1) = O(log n)
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I n this chapter, we provide detailed np-complete reductions for many of the prob-
lems in Chapter 8 of Algorithms by DPV. This is (mostly) just a formalization of

the Herculean effort by our class to crowd-source the solutions on our Piazza forum,
so a majority of the credit goes to them for the actual solutions.

Each problem clearly denotes where the solution starts, so you can attempt it yourself
without spoilers if you want.

DPV 8.1: Optimization vs. Search

We spent all of our efforts in chapter 6 focused on search problems, which are a
specific formulation of problems in np (see section 6.1 for a recap). Here, we’ll show
that these are equivalent in difficulty to optimization problems which aim to find the
“best” solution to their equivalent search problem.

TSP Search:

Input: A matrix of distances and a budget, b.

Output: A tour which passes through all of the cities and has a
length ≤ b, if one exists.

TSP Optimization:

Input: A matrix of distances.

Output: The shortest tour which passes through all of the cities.

The goal is to show that if TSP can be solved in polynomial time, so can TSP-Opt.
This is an important result, because it shows that neither of these problems is easier
than the other; furthermore, the technique for the proof applies to all problems of
this form.

Solution Suppose we have a polynomial time algorithm F for TSP. Then, we can
use binary search on the budget to find the shortest possible tour: we start with the
minimum budget (the shortest possible distance) and the maximum budget (the total
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of all distances, so any path works) and whittle down until we find the budget b for
which TSP on b − 1 no longer has a tour. This is formalized in algorithm 10.1: we
always exhaust the binary search bounds, then return the budget just outside of those
bounds.

Algorithm 10.1: A way of relating search and optimization problems using
binary search, applied specifically to the TSP.

Input: F , a polynomial-time algorithm for TSP Search.
Input: D, the matrix of distances.
Result: P , the shortest tour through all of the cities.

l, h = minP,
∑
P /* the bounds */

while l ≤ h do
b =

⌈
h−l
2

⌉
// the search budget: halfway between the bounds

d = F (D, b)
if d = “no” then // budget too low

l = b+ 1
continue

end
h = b− 1

end
return F (D, b+ 1) // the lowest possible budget

Binary search takes O(log2 n) time to find a needle in an n-sized haystack; here, the
haystack has n =

∑
D possibilities. Thus, this algorithm takes polynomial time to

solve TSP-Opt overall.

DPV 8.2: Search vs. Decision

In a shocking twist, now we’ll relate decision problems—where we only know whether
or not a solution exists—to the search problems we’ve been working with using the
Rudrata path problem (known to be np-complete) as an example.

A Rudrata path is a path s; t that passes through every vertex in graph without
touching any vertex more than once (think, for example about whether or not a knight
can jump to every square on a chessboard without returning to a visited square). More
generally, Rudrata cycle is any path that passes through every vertex in a graph.
Both of these are known np-complete problems.

Rudrata Decision:
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Input: A graph G = (V,E).
A pair of start and end vertices, s, t ∈ V .

Output: Whether or not the graph has a Rudrata path.

Given a polynomial-time algorithm to the above problem, we must relate it to its
search equivalent in which we want the actual path itself.

Solution This is damn-near trivial: we simply iteratively remove edges (in an arbi-
trary, predetermined order) from G and check if there’s still a Rudrata path. If there
is, keep the edge removed permanently. By the end, we’ll only be left with edges
that are essential to the Rudrata path and thus are the Rudrata path. All of these
operations take polynomial time, so the resulting algorithm is still polynomial (even
if it’s O

(
n|E|
)
, for example).

DPV 8.3: Stingy SAT

We must prove that the following problem is np-complete:

Stingy SAT:

Input: A Boolean formula in CNF with m clauses composed of n vari-
ables.
An integer k.

Output: A satisfying assignment in which ≤ k variables are set to true, if
such an assignment exists.

Solution This is a generalization of SAT: simply let k = n to allow every variable
to be set to true if necessary. The result is obviously still a solution to the original
SAT.

DPV 8.4: 3-Clique

In this variant of finding cliques, the input graph can only have vertices with degree
≤ 3 (that is, a vertex can only have edges to at most 3 other vertices). We present
the solutions in a very abridged form because there is no reduction and the official
solution is clear enough on all counts.

Solution Part (a) is trivial by the simple fact that 3-Clique is just as easy to verify
as Clique. Spotting the errors in the reductions presented in (b) and (c) should be
trivial given enough attention to detail1 to lecture content, and the algorithm for

1 Still need help? (b) is flawed because reduction goes in the wrong direction, while (c) is flawed
because the claim about vertex covers⇔ cliques is incorrect (see the “key idea” of the vertex cover
reduction in subsection 6.3.4).
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(d) can be solved with brute force in O
(
|V |4

)
time—just consider every 4-tuple of

vertices, since any clique in such a restricted graph can only have four vertices.

DPV 8.5: This problem is skipped (for now) because neither the 3D-Match nor Rudrata Cycle

problems and reductions are covered in lecture.

DPV 8.6: (a) We are tasked with showing that if a literal appears at-most once in a 3SAT
formula, the problem is solvable in polynomial time.

Solution Each variable is only represented in at most two clauses and it will
only be true in one of them, so we can set up a bipartite graph—a graph that
can be separated into two sets of vertices with all edges crossing from one set
to the other—with the variables on the left and the clauses on the right. For
example, given the Boolean formula:

f = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x2) ∧ (x3 ∨ x4)

the resulting graph would be as on the right (where ci is the ith clause above,
obviously).

x1

x2

x3

x4

c1

c2

c3

But then the question of satisfiability just becomes one of finding a maximum
flow! All of the clauses must output 1 (indicating a successful assignment) for
the formula to be satisfied, and each variable’s edge is a possible flow (one for a
positive assignment and one for a negative assignment). All we need to do is set
up the source and sink accordingly:

x1

x2

x3

x4

c1

c2

c3

S T

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
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If we can get a flow of 3 above, we can satisfy f . Since maximum flow can
be calculated in polynomial time (recall the Edmonds-Karp algorithm), so can
3SAT with this restriction.

(b) We are tasked with showing that the independent set problem stays np-complete
even if we limit all vertices to have degree d(v) ≤ 4.

Solution Recall the reduction from 3SAT to IS from subsection 6.3.2: we made
each clause fully-connected, then connected literals that used the same variable.
Since we can restrict 3SAT to have each variable appear no more than thrice
and still be np-complete,2 there are up to two more edges from a variable to
its literal counterparts. The conclusion was that an IS in this graph provides
a satisfying assignment for 3SAT, but obviously in the constructed graph each
vertex only has a degree of (at most) 4! �

DPV 8.7: TODO later, since this requires also solving DPV 7.30 :eyeroll:

DPV 8.8: The goal is to prove the following problem is np-complete:

Exact 4SAT:

Input: A CNF formula f with m clauses and n variables, in which all
clauses have exactly 4 literals and each variable occurs at most
once in each clause.

Output: A satisfying assignment, if one exists.

Solution

We proceed with a reduction from 3SAT to this variant that is very similar to the
reduction in lecture from SAT → 3SAT (refer to subsection 6.3.1).

Within NP Trivially, Exact-4SAT is in np for the same reason that 3SAT is (veri-
fiable just by traversing each clause, O(m) time).

Transformation We can disregard clauses with one literal, since those variables
can be assigned directly and the overall formula gets simpler. To expand, consider
the following 3SAT expression:

f = (x1) ∧ (x2 ∨ x1 ∨ x3) ∧ (x3 ∨ x1 ∨ x2)

This is identical to dropping x1 entirely, since it must be true:

f = (x2 ∨ x3) ∧ (x3 ∨ x2)

2 consult the framed fact in the linked subsection, or refer to Algorithms, pp. 251
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Furthermore, if an expression contains a variable more than once, we can introduce
a new variable and split it up into two expressions which will be logically equivalent.
For example:

(x1 ∨ x2 ∨ x1)⇐⇒ (x1 ∨ x2 ∨ y1) ∧ (x2 ∨ x1 ∨ y1)

Notice that if the right side has a solution, the left side does too. Thus, we really
only need to consider 2-literal and 3-literal clauses with unique literals and convert
them to a 4-literal clause to satisfy the requirements of Exact-4SAT.

For the 3-clause, we do this by forcing a new variable a to be logically inconsistent:

(x1 ∨ x2 ∨ x3)⇐⇒ (x1 ∨ x2 ∨ x3 ∨ a) ∧ (x1 ∨ x2 ∨ x3 ∨ a)

Notice that if a = T , then the original clause must somehow be satisfied in the second
clause, and vice-versa if a = F . We do the same thing for the 2-clause using two
variables, always ensuring that the original clause still needs to be satisfied if either
a or b are satisfied:

(x1 ∨ x2)⇐⇒ (x1 ∨ x2 ∨ a ∨ b) ∧ (x1 ∨ x2 ∨ a ∨ b) ∧
(x1 ∨ x2 ∨ a ∨ b) ∧ (x1 ∨ x2 ∨ a ∨ b)

This completes the transformation and the correctness is self-evident from the con-
struction itself.

DPV 8.9: The goal is to prove the following problem is np-complete:

Hitting Set:

Input: A family of sets, F = {S1, S2, . . . , Sn} and a budget, b.

Output: A set H with a size not exceeding our budget, |H| ≤ b, such that it
contains at least one element from every set: ∀Si ∈ F : H∩Si 6= ∅.

Solution

Typically when we hear “budget,” we should think about the vertex cover problem
since it’s the only other reduction we saw with a budget rather than a goal.

Within np Verifying that H intersects with every Si involves calculating n inter-
sections, each of which takes at most m = maxi |Si| operations (i.e. the biggest set),
so the verification takes O(nm) time.

Transformation We start with a graph G = (V,E) and a budget, b. Construct the
sets by assigning each vertex a number (so let V = {v1, v2, . . . , vn}) and letting each
edge be a set. In other words:

∀(vi, vj) ∈ E : Sk = {i, j}
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Correctness The hitting set of F will include at least one value from each of the
above sets by definition. This means it includes at least one vertex from each edge
which is a vertex cover by definition. Iff there is no hitting set such that |H| ≤ b,
then there is also no vertex cover of size b. �

DPV 8.10: Generalization

This is an important problem because it contrasts reductions. Instead of reducing a
known np-complete problem to a novel one, we show that a particular problem is a
more-general version of a known np-complete problem.

(a) Subgraph Isomorphism:

Input: Two graphs, G and H.

Output: Determine whether or not we can turn H into G by dropping
some amount of vertices or edges (up to “renaming” vertices).
The corresponding mapping of vertices, V(G) 7→ V(H).

Solution This is a generalization of the Clique problem. There, we were given
a graph Q and a goal of g. Here, we let H = Q and G is a fully-connected graph
with g vertices (i.e. a clique of size g).

Obviously if H can be turned into G, then Q has a clique of size g.

(b) Longest Path:

Input: A graph G and an integer g.

Output: A simple path of length g (that is, a path that doesn’t
intersect itself).

Solution This is a generalization of the Rudrata cycle problem: we let g be
the total length of all vertices in the graph.

(c) Max-SAT:

Input: A Boolean formula f in conjunctive normal form with n
variables and m clauses; and a goal g.

Output: An assignment that satisfies at least g clauses in f .
Recall that we discussed the optimization variant of Max-SAT in terms of linear
programming in section 5.4.

Solution This version is obviously just a generalization of SAT with g = m.

(d) Dense Subgraph:
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Input: A graph, G = (V,E), and two integers a and b.

Output: A set of a vertices V ′ ⊆ V such that there are at least b
edges between them.

Solution This can be interpreted as a generalization of the independent set
problem: simply let a = g, the IS goal, and let b = 0, so there are no edges
between the vertices (the definition of a g-sized independent set).

This can also be viewed as a generalization of the clique problem, where we try
to find a = g vertices with b = g(g−1)

2
edges between them. We calculate b by

a simple analysis: for a g-sized clique, the first vertex needs g − 1 edges to the
other vertices, the second needs (since the previous case covered (v1, v2)), and
so on. This comes out to just being the sum of the first g integers.

For those interested or confused, the lengthy algebra follows:

b = (g − 1) + (g − 2) + . . .+ (g − g + 1)

= g + g + . . .+ g︸ ︷︷ ︸
g−1 times

− (1 + 2 + 3 + . . .+ (g + 1))︸ ︷︷ ︸
sum of first g + 1 integers

= g(g − 1)− (g + 1)(g + 2)

2

=
2g(g − 1)− (g + 1)(g + 2)

2

=
2g2 − 2g − g2 + 3g + 2

2
=
g2 + g + 2

2
=
g(g + 1)

2

(e) TODO

(f) Reliable Network:

Input: Two n × n matrices: a distance matrix D = {dij} and a
connectivity requirement matrix R = {rij}.
A budget b.

Output: Find a graph G = ({1, 2, . . . , n}, E) such that:
• the total cost of all edges matches the budget:
b =

∑
(i,j)∈E

dij

• between any vertices i and j there are rij vertex-disjoint
paths.

Solution TODO

DPV 8.11:
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DPV 8.12:

DPV 8.13:

DPV 8.14: We must prove that the following problem is np-complete:

Clique & Independent Set Problem:

Input: An undirected graph, G = (V,E) and a integer goal k.

Output: A clique C ⊆ V of size k, and an independent set S ⊂ V of size
k, or “no” if both don’t exist.

Solution

We will show a reduction from the IS problem (whose input is (G, g)) to this new
clique+IS problem.

Within np Verifying a solution to the Clique+IS problem is just a matter of ver-
ifying each part individually, and we showed in lecture that this can be done in
polynomial time for both. Therefore, this problem is within np.

Transformation The transformation is simple: we introduce a new (g + 1)-node
clique, Q, into the original graph.

Running the clique+IS algorithm on G′ and a goal k = g + 1 will now obviously
always find a clique. It will also give an independent set S of size g+1, but, critically,
no more than one of those vertices comes from the “fake” clique (since cliques are
fully-connected) so it must mean there is a size g clique in the original graph.

Correctness Now, we need to prove that given our transformation:
IS has

a solution ⇐⇒ IS+Clique
has a solution

Forward Direction— If there is an independent set S ′ of size g in the original graph
G, then by introducing the new clique to craft G′, we know that there is a (g+1)-sized
clique (by construction) and a (g+ 1)-sized independent set (just add any vi from the
fake clique to S ′). �

Reverse Direction— If there is both an independent set S and a clique C of size
k = g + 1 in G′, then by dropping any vi from S, we get an independent set of size
g (since there can be at most one such vi). If there is no such vi, we have a direct
solution since |S| ≥ g as required by the IS problem. �

DPV 8.15: We must prove that the following problem is np-complete:

Maximum Common Subgraph:
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Input: Two graphs, G1 = (V1, E1) and G2 = (V2, E2) and a budget, b.

Output: Two sets of vertices V ′1 ⊆ V1 and V ′2 ⊆ V2 such that deleting them
from their respective graphs leaves at least b nodes in each graph
and makes the graphs identical.

Solution

At first it may seem that this has a relationship to the Subgraph Isomorphism problem
above (see 8.10a), and it sort of does, in the sense that all of the graph problems are
sort of similar. We proceed by a reduction from the vertex cover problem.

Within np We technically need a mapping from one set of vertices to another in
this for it to truly be verifiable in polynomial time, but if we just consider equal graph
structure to mean equal graphs, then it’s pretty trivial. All we need to do is confirm
that the amount of vertices matches (constant time, or linear if your data structure
is garbage) and that the edges are the same per-vertex. We can do this by finding
the vertex in V1 \ V ′1 that has the same edges as in V2 \ V ′2 in O(mn) time: compare
each edge list (which is ≤ m edges long) of each vertex (which is ≤ n long), and do
this for every vertex. Since both graphs could be fully-connected in the worst case,
this takes O(n3) time overall.

Transformation Let G1 = (V,E) be the original graph, G2 = (V2, ∅) be simply b′
disconnected vertices (where b′ is the input budget to the VC problem rather than
the above budget), and the budget be b = b′ (meaning nothing in G2 gets removed).
Then, we claim that the Max-Common-Subgraph problem has a solution iff the VC
problem has a solution.

Forward Direction Given a solution V ∗ ⊆ V to the VC problem with the input
(G, b′), the above problem also has a solution since one could simply drop V ′1 = V ∗

(and V ′2 = ∅, so no action there is required). By the definition of a vertex cover, V \V ′1
would leave no edges and leave exactly b = b′ = |V2| = |V \ V ′1 | vertices behind (and
thus match G2). �

Reverse Direction Given a solution pair (V ′1 , V
′
2) to the Max-Common-Subgraph as

described above, the VC problem will also have a solution: just drop V ′1 from the
original graph and return the resulting set of vertices. �

DPV 8.16:

DPV 8.17: Show that any problem within np can be solved in O
(
2p(n)

)
time, where p(n) is some

polynomial.
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Solution With an input size of n elements, we can simply do an exhaustive search
over all of them since verifying their correctness takes polynomial time (by the nature
of being within np). There are 2n possible inputs, and each takes some q(n) time to
verify (where q is the verification algorithm), thus its big-O is:

= O(2n · q(n))

= O
(
2n · 2q(n)

)
rememer, O(·) is the worst case, and obviously xn ≤ 2n

= O
(
2n+q(n)

)
If we let p(n) = n+ q(n), we’re done.

DPV 8.18: Breaking RSA

Show that if p = np, RSA can be broken in polynomial time.

Solution RSA relies on the fundamental mathematical difficulty that factoring a
product of two primes, N = pq is not doable in polynomial time.

If it is, then finding the separate p and q becomes trivial, so an adversary can find
ϕ (N) = (p − 1)(q − 1) and compute the inverse of e under mod ϕ (N) themselves
(recall that ed ≡ 1 (mod ϕ (N))), revealing the decryption key.

DPV 8.19: Kite

A kite is a graph on an even number of vertices (|V | = 2n) in which n of the vertices
form a clique and the other n are connected in a “tail” that is simply a path from one
of the vertices in the clique (think quite literally of a kite and its string, except the
kite itself is a fully-connected graph).

Kite Search:

Input: A graph G = (V,E) and a goal g.

Output: A subgraph of G which is also a kite and contains 2g nodes.

Solution

Aren’t we (at the very least) trying to find a clique within a graph and some extra
stuff (the “tail”)? This is how the reduction will proceed.

Transformation If Kite can find a solution, so can Clique by simply dropping the
path. Thus, the transformation from (G, g) (the graph and goal from finding cliques)
just involves adding a g-length path from an arbitrary vertex in G to fulfill the kite
requirements. Under this transformation, we need to show that:

Clique has
a solution ⇐⇒ Kite has a

solution
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Forward Direction Given a solution Q to (G, g), we can just add a g-length “tail”
to any of the vertices in Q and get a solution to the kite problem.

Reverse Direction Given a solution Q to the kite problem on the transformed G
as input, we can drop the tail from the solution to obtain a solution for getting a
g-size clique.

DPV 8.20: We must prove that the following problem is np-complete:

Dominating Set:

Input: A graph, G = (V,E) and a budget, b.

Output: A dominating set, D ⊆ V of size |D| ≤ b, in which every vertex
v ∈ V is either within D or has a neighbor within D (if it exists).

Solution

The description of a dominating set sounds remarkably similar to that of a vertex
cover; the term “budget” should clue us in. We will thus reduce from the vertex cover
problem to the dominating set problem.

Transformation Given a graph, we modify each edge to force the dominating set
to include at least one endpoint and result in a valid vertex cover. Specifically, we
create a triangle to each edge: for each edge (u, v), we introduce a new vertex w and
add the edges (w, u) and (w, v).

For example, given the original vertices in blue we add the bonus vertices in red:

Forward Direction This is trivial: a vertex cover is a dominating set by definition.
Since every edge in the graph has at least one of its vertices in the VC and its other
vertex is obviously its neighbor, this is a dominating set.

Reverse Direction Any of our given triangles needs at least one vertex to be within
D; this is obvious—if the original vertices are covered by the dominating set condition
without using w, then w is left out. Now if w is used, we can use u or v instead and
still maintain a dominating set. And since u and/or v is always used for any given
edge, this is a vertex cover! �

DPV 8.21: Sequencing by Hybridization
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In this problem, we are given a multiset (a set which can contain elements more
than once) of something called k-mers—a k-mer is a substring of length k. From
these substrings, we need to reconstruct the full, original string.

We say that Γ(x) is the multiset of a string x’s k-mers. For example, given the
following string (we exclude spaces to make the substrings easier to read):

x = thequickbrownfox

and k = 5, we’d have the following multiset (which doesn’t have any repeat elements,
but it could):

Γ(x) = {thequ, hequi, equic, quick, uickb, ickbr, ckbro, kbrow, brown, rownf,
ownfo,wnfox}

Note that the k-mers are actually randomly sampled, so the above ordering doesn’t
necessarily hold. The goal, again, is to reconstruct x from the multiset.

(a) First, we need to reduce this problem to the Rudrata-Path problem; recall that
a Rudrata path is a path that touches every vertex once.

Solution How do we know that two particular k-mers “match”? That is, how
do we know that thequ and hequi are part of the same string, and thequ and
quick aren’t? Obviously because the 2-through-kth characters of one match the
1-through-(k − 1)th of the other.

To resolve these ambiguities, we make every k-mer a vertex in a graph and
connect them if the above condition holds. We use a different string with 3-mers
and repeat substrings for a more robust example, let x = bandandsand. Then:

ban

dan

san

and

and

and

nda

nds

dsa

One of the Rudrata paths is highlighted in blue: following the path reconstructs
the original string.

We need to prove correctness, though. At the very least, every substring of the
original string will be in the reconstruction, since the Rudrata path will touch
every vertex only once. If there are duplicate vertices (like the ands above),
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it doesn’t matter which a given prefix chooses, since they’ll all have the same
incoming and outgoing degree; in other words, duplicate k-mers are identical
vertices.

In the above example, the “start” vertex is clear, but in truth this may not always
hold (consider the graph if the suffix was band again rather than sand).

TODO: lol I can’t finish this train of thought.

(b) TODO

DPV 8.22:

DPV 8.23:
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Exam Quick Reference

T he content covered in each chapter is dense and there’s a lot to understand.
Hopefully these minimal study guides are useful in summarizing the big, impor-

tant points. If any of them seem foreign in any way, I’d review the relevant topic
again. Keep in mind that these are by no means comprehensive! They should be
viewed as necessary but not sufficient : if there’s something in the quick-reference that
you don’t understand, you need more review, but if you understand everything, that
does not mean you don’t need other preparation. View it more as a bare minimum
baseline of knowledge.

Contents

11 Exam 1 122

12 Exam 2 124

13 Exam 3 126
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T his study guide reiterates the common approaches to solving Dynamic Program-
ming problems, then hits the highlights of Divide & Conquer.

Dynamic Programming:

• Longest Increasing Subsequence: the key idea is that our subproblem
at the ith character always includes xi, so by the end we have all possible
subsequences and take the best one. The recursive relation is

L(i) = 1 + max
1≤j<i

{L(j) | xj < xi}

Its running time is O(n2).

• Longest Common Subsequence: the key idea is that we can either in-
crement ` if the end characters match, or simply preserve the longer one. The
recursive relation is

L(i, j) =

{
1 + L(i− 1, j − 1) if xi = yj

max (L(i− 1, j), L(i, j − 1)) otherwise

Its running time is O(n).

• Knapsack: you want to fit as many of n weighted objects as possible into a
particular container, with some limited capacity B. The key idea is that you
either add the current object into a knapsack that fits it, or you use the last-best
knapsack. The recursive relation is

K(i, b) =

max

{
vi +K(i− 1, b− wi)
K(i− 1, b)

if wi ≤ b

K(i− 1, b) otherwise

Its running time is psuedo-polynomial: O(nB).

• Knapsack (unlimited): in this variant, you can put as many copies of each
object as you want into your container. The key idea is that we no longer need
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to track how many objects we have available anymore. The recursive relation
is

K(b) = max
i
{vi +K(b− wi) | 1 ≤ i ≤ n,wi ≤ b}

Its running time is still O(nB).

• Matrix multiplication: this approach differs from the rest in that its key
idea is to split the problem into “left” and “right” subproblems. It fits problems
that have some sort of “middle” in which each side has already been solved. The
recursive relation is

M(i, j) = min
i≤k<j

[M(i, k)︸ ︷︷ ︸
left

subtree

+M(k + 1, j)︸ ︷︷ ︸
right

subtree

+mi−1mkmj︸ ︷︷ ︸
new cost

]

Its running time is O(n3).

Divide & Conquer:

Honestly, the biggest key here is the Master theorem:

T (n) = aT
(n
b

)
+O

(
nd
)

=


O
(
nd
)

if d > logb a

O
(
nd log2 n

)
if d = logb a

O
(
nlogb a

)
if d < logb a

There are a lot of tiny details, but there’s a pattern that should help you remember
it: b is for bottom (logarithm base and denominator) and a is the first letter so it
comes before T (·). For the relationships themselves, if the “extra work” (that is, the
O
(
nd
)
) is big, it dominates; if it matches, it contributes equally; and if it is lower,

the recursion matters most.

It’s also useful to remember that binary search halves the problem space and follows
only one of them; it’s recurrence is:

T (n) = T
(n

2

)
+O(1) ; O(log2 n)

It makes for a good baseline to judge your D&C algorithms on.

Finally, you should understand (at least) the basics of the FFT; the section itself is
one page long (ref. section 2.4), so it’s already condensed to the maximal degree.

Good luck; have fun!
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T his study guide hits all of the graph algorithms once more, starting from search
to spanning trees to max-flow.

Remember, a graph is denoted as G = (V,E), and n = |V |, m = |E| when discussing
running time.

Search

• DFS: repeatedly runs Explore(v) on unvisited vertices, which visits all ver-
tices reachable from v. DFS also finds and labels each vertex with its connected
component, and tracks post-order numbers which help identify cycles.

Its running time is linear, O(n+m).

• BFS: works like DFS, except uses a queue instead of a stack to consider the
next node to visit. It finds shortest paths from a starting vertex, marking a
dist[v] array with the distance from s; v.

• Dijkstra’s: works like BFS except it uses a priority queue. It finds the shortest
path in a graph with positive edge weights from a starting vertex v to all
vertices.

Its running time is O((m+ n) log n).

• SCC: finds the strongly-connected components of a digraph (ref. the steps for
how it works). The components form a DAG in topological order.

The algorithm relies on the property that the vertex with the highest post-
order number will always lie in a source strongly-connected component.

Its running time is O((m+ n) log n).

MSTs

• Kruskal’s: greedily identifies the MST of a graph.

Its running time is O(m log n).

• Prim’s: greedily identifies the MST of a graph, but keeps the intermediate MST
(that is, the subtree as its being built) connected, whereas Kruskal’s algorithm
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always connects the lowest-cost edge.

Its running time is O((n+m) log n).

Max-Flow

In addition to a digraph G = (V,E), max-flow problems also include the edge capac-
ities c (which are often denoted with ce for the edge e ∈ E), a starting source vertex
s, and an ending sink vertex t. Capacities are always positive.

Max-flow algorithms output a flow f , where fe is the flow along the edge e ∈ E. For
every edge, a valid flow constitutes 0 ≤ fe ≤ ce.

• A residual network is the graph describing the remaining capacity. It’s usually
denoted Gf .

Computing a residual network takes linear time—O(m+ n)

• Ford-Fulkerson: solves for max flow given integer capacities.

Its running time is pseudo-polynomial, O(mC), where C is the size of the max-
flow.

• Edmonds-Karp: solves max-flow for any valid flow network. It modifies Ford-
Fulkerson by choosing the shortest path in the residual network rather than any
path.

Its running time is O(m2n).

• The maximum flow also describes the minimum cut: all of the vertices reach-
able from s in the residual graph form one side of the cut, and the other vertices
form the other.

GL;HF

Kudrayvtsev 125



ku
dra

yv
tse

vExam 3

T his study guide summarizes the chapters on Linear Programming and Computa-
tional Complexity into an at-a-glance quick-reference for the important concepts.

Linear Programming:

• LPs are just systems of inequalities.

• LPs work because of convexity: given the vertices bounding the feasible region,
convexity guarantees that greedily jumping to a better neighbor leads to optima.

• LPs don’t always have optima: an LP can be infeasible based on its con-
straints, and unbounded based on its objective function.

– Feasibility is tested by adding a z and checking if it’s positive in the best
case on the new LP: Ax + z ≥ b.

– Boundedness is tested by checking the feasibility of the dual LP: if the
dual is infeasible, then the primal is either unbounded or infea-
sible.

• Dual LPs:

– The dual of an LP finds y—the smallest constants that can be applied
to the primal constraints and find the same optima—takes the following
form:

max cTx

{
Ax ≤ b

x ≥ 0
minbTy

{
ATy ≥ c

y ≥ 0
⇐⇒

– If the dual is infeasible, the primal must either be unbounded or infeasible
(you can tell which by doing the infeasibility test).

– weak duality basically states that the primal is bounded by the dual for
any feasible point: cTx ≤ bTy.

– strong duality states that if you find the same feasible point in both
the primal and the dual that this is an optimum.

– Optima only exist if both LPs are feasible and unbounded.
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• We can approximate Max-SAT—where m∗ is the theoretical maximum number
of satisfiable clauses—to have a 3

4
m∗ algorithm in polynomial time.

• Finding integer solutions to LPs (ILPs) is np-hard by a reduction from Max-
SAT.

• ILPs can be approximated by rounding, and are often approximated with ran-
domized algorithms that can make some “closeness” guarantees.

Complexity:

• In terms of difficulty, p ≤ np-complete ≤ np-hard (we use ≤ since it’s unknown
if p ?

= np).

• 3SAT can be constrained to have variables appear no more than thrice.

• S ⊆ V is a clique in G if and only if S is an independent set in G.

• S will be a vertex cover if and only if S = V \ S is an independent set.

• Known np-complete problems and their (brief) reduction intuitions:

– SAT

– k-coloring

– Rudrata Path

– 3SAT—reduction from SAT by
introducing a yi to break clauses
up into sets of 2 (plus the yi).

– Stingy SAT—generalization of
SAT

– IS—reduction from SAT by fully-
connecting clauses and connect-
ing variables.

– VC—reduction from the IS fact
above

– Clique—reduction from the IS
fact above

– Subset Sum

– Hitting Set—reduction from VC
by making each edge a set, so the
hitting set always contains one
vertex from each edge

– Dominating Set—reduction from
VC by forcing all edges to have
a vertex in D through a triangle
formation

– Maximum Common Subgraph—
reduction from VC where you
keep the original graph the same
and try to match to b discon-
nected vertices (which would be
a VC)

– Kite—reduction from clique sim-
ply by adding a kite tail

• Proving a problem is np-complete is done either by reduction from a known
np-complete problem or generalization to an np-complete problem. In both
cases, you first need to show that the solution is verifiable in polynomial time
to make the problem within np.

For reductions, you need a polynomial time transformation and a bidirectional
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proof of correctness that a solution exists for A if and only if it exists for B (on
the transformed inputs / outputs).

• Useful generalizations include:

– Subgraph isomorphism, where you try to transform some generic graph
H into a specific graph G by dropping vertices (generalization of Clique,
where G is a clique you want to find)

– Longest path, where you want to find the longest non-self-intersecting
path (generalization of the Rudrata cycle).

– Dense subgraph, where you want to find a vertices in a graph that
contain b edges (generalization of independent set where you want to find
vertices that contain no edges between them).

As always, GL;HF!
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