
ku
dra

yv
tse

vAlgorithms for Rob tics
or: An Unofficial Companion Guide to the Georgia

Institute of Technology’s CS7638: Robotics: AI Techniques

George Kudrayvtsev
george.k@gatech.edu

Last Updated: April 24, 2020

(Draft)

0 Preface 3

1 Introduction to Probability 5
1.1 Localization . 5
1.2 Probability . 7

2 Sensing 8

3 Planning 9
3.1 An Algorithm: Greedy Search . 11
3.2 Heuristic-Based Search . 13
3.3 An Algorithm: The All-Seeing EyE 14

4 Moving 17
4.1 Smoothing . 17
4.2 PID Controller . 18

4.2.1 P is for Proportional . 18
4.2.2 D is for Derivative . 20
4.2.3 I is for Integration . 21

Integral Windup . 21
4.2.4 Parameter Search: Twiddle 22

5 Simultaneous Localization and Mapping 25
5.1 Constraints . 26

5.1.1 Motion Constraints . 27
5.1.2 Landmark Constraints . 28

5.2 Generalization . 29

1

mailto:george.k@gatech.edu

ku
dra

yv
tse

v5.2.1 Introducing Noise . 30
5.3 Summary . 31

Index of Terms 33

2

ku
dra

yv
tse

vPreface

I read that Teddy Roosevelt once said, “Do what you can with
what you have where you are.” Of course, I doubt he was in the
tub when he said that.

— Bill Watterson, Calvin and Hobbes

Before we begin to dive into all things robotics, here are a few things I do in this
notebook to elaborate on concepts:

• An item that is highlighted like this is a “term;” this is some vocabulary or
identifying word/phrase that will be used and repeated regularly in subsequent
sections. I try to cross-reference these any time they come up again to link back
to its first defined usage; most mentions are available in the Index.

• The presence of a TODOmeans that I still need to expand that section or possibly
to mark something that should link to a future (unwritten) section or chapter.

• An item in a maroon box, like. . .

Boxes: A Rigorous Approach

. . . this example, often represents fun and interesting asides or exam-
ples that pertain to the material being discussed. They are largely
optional, but should be interesting to read and have value, even if it’s
not immediately rewarding.

• An item in a blue box, like. . .

Quick Maffs: Proving That the Box Exists

. . . this example, is a mathematical aside; I only write these if I need
to dive deeper into a concept that’s mentioned in lecture. This could
be proofs, examples, or just a more thorough explanation of something

3

ku
dra

yv
tse

v
CHAPTER 0: Preface

that might’ve been “assumed knowledge” in the text.

Kudrayvtsev 4

ku
dra

yv
tse

vIntroduction to Probability

73.6% of all statistics are made up and 90% of quotes are mis-
attributed.

— Abraham Lincoln, The Internet

W e’ll open our discussion of algorithms for robotics applications by discussing
probability. However, we’ll take an example-based approach, working up to
a method for localization using basic probability theory.

Localization is the need to determine where you are in the world. This is an important
skill for humans and robots alike and can be achieved to varying degrees of success;
some of us just have a “bad sense of direction.” Given a layout of some area, a
robot should be able to determine where it is based on sensor readings or other
measurements.

1.1 Localization

Suppose a robot is in a simple hallway with three doors:

?

We see that it’s in front of the first door, but the robot doesn’t know that. Instead,
it has a probability distribution representing its confidence at each point in the
hallway. For the sake of simplicity, suppose we discretize the hallway into 7 spots;
then, we can say thatX represents the distribution of probabilities for each position in
the hallway. Since the robot knows nothing about its location yet, this is a uniform
distribution:

X = {1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7}

5

ku
dra

yv
tse

v
CHAPTER 1: Introduction to Probability

1/7

LocationP
r[
X

=
x
]

1 2 3 4 5 6 7

Location

P
r[
X

=
x
]

For the robot to increase its certainty
about the situation, it needs to per-
form a measurement. The distribu-
tion before the measurement is called
the prior or belief distribution; after-
wards, it’s called a posterior. Suppose
the robot measures, with some doubt, that it’s in front of a door. Naturally, we’d
expect its location probability distribution to now peak at doors.

The reason why we don’t have hard spikes is because of uncertainty in our measure-
ment: sensors are never perfect, so we need to take into account the fact that it’s
possible we measured “door” when there in fact wasn’t one.

We continue iterating on the localization process by doing this again after a movement.
Suppose we move one step to the right:

1 2 3 4 5 6 7

Location

P
r[
X

=
x
]

Our prior (pre-measurement) belief dis-
tribution should shift accordingly, but
it also flattens out a bit because again,
movements are not perfect, so we need
to take into account the possibility of
not moving exactly 1 unit.

Our robot takes a measurement and determines it’s in front of a door again. Well,
there’s only one place in our map in which you can measure a door, move right, then
still measure a door, and our posterior distribution reflects this:

1 2 3 4 5 6 7

Location

P
r[
X

=
x
]

If you followed this logic, you understand probability and localization!

Kudrayvtsev 6

ku
dra

yv
tse

v
ROBOTICS: AI TECHNIQUES

1.2 Probability

With this intuition under our belt, let’s make things a little more concrete. We’ll
work with a simpler example, keeping our little robot friend around. We have a map
of five tiles, each of which is either red or green.

?

Our initial distribution is uniform with each position x having Pr [X = x] = 1/5 = 0.2.
Suppose our robot claims to measure that he’s on a red tile. As before, we expect our
distribution to be biased towards red tiles. Mathematically, this is just a product.
We can choose an arbitrary large number of red tiles and a smaller one for green tiles,
say, red = 0.6 and green = 0.2. Then we multiply our distribution accordingly:

1/5 1/5 1/5 1/5 1/5
× 0.2 0.6 0.6 0.2 0.2
= 0.04 0.12 0.12 0.04 0.04

This becomes our belief! The last step is to turn it into a valid probability distribution;
it doesn’t exactly make sense for only 36% of the cases to be covered. We need to
normalize our distribution by dividing it by its sum:

0.04 0.12 0.12 0.04 0.04
÷ 0.36 0.36 0.36 0.36 0.36
= 1/9 1/3 1/3 1/9 1/9

Each of these values can formally be described in the form Pr [X = xi |Z], the con-
ditional probability of being at cell xi (where xi is in the set of all possibilities, X)
after measuring (or observing) Z.

This is called the measurement update step and is an integral part of localization.

Kudrayvtsev 7

ku
dra

yv
tse

vSensing

All our knowledge begins with the senses, proceeds then to the
understanding, and ends with reason. There is nothing higher
than reason.

— Immanuel Kant, Critique of Pure Reason

T hough this chapter may be expanded in the future with supplemental content,
I’ve already covered this content at length during Computer Vision. I highly
recommend just heading over to Chapter 12: Tracking for the overview on both

Kalman filters and particle filters.

8

https://teapowered.dev/assets/cv-notes.pdf#chapter.12

ku
dra

yv
tse

vPlanning

Life is what happens to us while we are making other plans.

— Allen Saunders

T he various tracking methods we covered in the previous chapter gives us in-
formation about the world. Now that we are “localized,” how can we use that
information to actually take action and achieve some goals? Enter planning.

There are many situations in which we have to find the optimal path from a starting
location to some destination. It could come from a literal use-case, like how a mapping
application tries to find you the optimal way to stop at In-n-Out on your trip across
California, or it could come from a more figurative use-case, like deciding the optimal
chess move by searching the “game tree.” As far as the algorithms are concerned,
these are equivalent: you are searching through a set of possible states and transitions
between them to find an optimal path.

A Tale of Two Apps: Google vs. Waze

Fascinatingly-enough, these two routing applications (which ultimately be-
long to the same company, Alphabet) often offer completely different routes
from one destination to another. This can largely be attributed to a philo-
sophical difference that drives the two applications: Google Maps is more
concerned with a simple, familiar, and easy-to-follow route from one place
to another that takes big, recognizable streets and sometimes offers slight
alternatives that may save time but typically don’t introduce extra com-
plexity; on the other hand, Waze is community-driven, meaning you can
use it to aggressively find convoluted shortcuts that will shave milliseconds
off of your trip time at your tires’ expense (given all of the extra turning
you’ll be doing).

When we get into the idea of a cost function shortly, we will see how different
choices for this can greatly affect the plan.

9

ku
dra

yv
tse

v
CHAPTER 3: Planning

Check out this discussion for a little more on Waze and Google if you’re
interested.

When discussing these planning, path-finding, or search algorithms (these terms are
often interchangeable) we typically use an example of a maze. Given that we are
working with robots and have real contexts that we can apply this to, we’ll be con-
sidering how an autonomous vehicle can navigate a handful of intersections without
maiming its passengers.

Consider the following situation, in which the blue car wants to get to the specified
destination and has two plans:

Figure 3.1: A complicated, ever-evolving situation we may commonly face when
driving.

The red plan has a high risk: merging across two lanes in such a short span of time
(with the optional theoretical teal truck in the way) and will also likely require waiting
at a red light, but it’s also the shortest path. On the other hand, the orange path
is simpler and doesn’t run the same risks, however it traverses a further distance.
Which path do you take?

Fun Fact: UPS Driving Patterns

If you follow the matra of UPS drivers, the orange path is always the better
choice: UPS drivers almost never turn left.

More importantly, what path does an autonomous vehicle take, and how can we

Kudrayvtsev 10

https://www.waze.com/forum/viewtopic.php?t=218943
https://www.cnn.com/2017/02/16/world/ups-trucks-no-left-turns/index.html

ku
dra

yv
tse

v
ROBOTICS: AI TECHNIQUES

encode this algorithmically?

In this chapter, we’ll cover robot motion planning methods, starting with discrete
methods in which the world is “chopped up” into small bins and moving on to con-
tinuous motion planning methods. Our problem can be defined more concretely.
Given:

• a map

• a starting location

• a goal location

• a cost function

We want to find the path from start −→ goal with the lowest cost.

Once we have the algorithms in place, we’ll see that the only thing that really varies is
the cost function. Let’s define it a little more. A cost function defines an association
between an action with a cost. For example, “just go straight” might cost 1, whereas
going diagonally might cost

√
2 ≈ 1.4 (thank u Pythagoras). In such a world, going

diagonally would always be better than going straight, turning, and going straight
again!

3.1 An Algorithm: Greedy Search

As is tradition, let’s imagine a simple grid-based maze:

0 1 2 3 4 5

0

1

2

3

4

S

G

Where we wish to reach the goal from the starting point. Suppose our set of possible
actions is movement in any of the 4 directions (no diagonals) and they all cost the
same.

We begin exploration from (0, 0) by expanding to neighboring nodes, meaning they
get added to what we call the “open list.” Furthermore, we’ve expanded on (0, 0) and
returning to it wouldn’t make sense, so it gets added to the “closed list”:

open = [(1, 0), (0, 1)] closed = [(0, 0)]

Kudrayvtsev 11

ku
dra

yv
tse

v
CHAPTER 3: Planning

Moving to both of these from our root costs 1 unit which we accumulate into what’s
called the g-score, so our state is something like this:

0 1 2 3 4 5

0

1

2

3

4

S

G

g = 0

g = 1

g = 1

(a) The partially-explored map.

(0, 0)

Down

(0, 1)

Right

(1, 0)

(b) The exploration of the game tree.

From there, we expand on the lowest-cost node in the open list. In this case they
have equal scores so the choice is arbitrary; let’s go down.

0 1 2 3 4 5

0

1

2

3

4

S

G

g = 0

g = 1

g = 1

g = 2

g = 2

(a) The partially-explored map.

(0, 0)

Down

(0, 1)

Down

(0, 2)

Right

(1, 1)

Right

(1, 0)

(b) The exploration of the game tree.

We continue this process recursively, continually expanding the node with the lowest
g-score, adding its neighbors to the open list while ignoring nodes on the closed list.
The whole algorithm is described in algorithm 3.1. Finally, we end up with a path
to the goal with the lowest possible cost (note that the exact path depends on tie-
breaking strategies):

Kudrayvtsev 12

ku
dra

yv
tse

v
ROBOTICS: AI TECHNIQUES

0 1 2 3 4 5

0

1

2

3

4

S

G

g = 0

g = 1

g = 1

g = 2

g = 2

g = 3

g = 3

g = 4

g = 4

g = 4

g = 5

g = 5

g = 6

g = 6

g = 7

g = 7

g = 7

g = 8

g = 8

g = 9

g = 9

g = 10

g = 11

We can (but won’t) prove the fact that this is the optimal result because we always
(that is, greedily) choose to explore towards the lowest g-score which represents the
accumulated cost. This method works but has a massive downside: we had to explore
a large chunk of the map that led us nowhere to find this path.

3.2 Heuristic-Based Search

We can avoid searching too much of the map by introducing the concept of a heuristic
to our search. A hueristic is a rough approximation about how far away we are from
the goal at a given cell; it can help break ties and actually help us avoid exploring large
swaths of the map. While the g-score is our total cost from the start, the heuristic is
an approximate cost to the goal. Their sum typically provides a good metric for the
“optimality” of a cell and is the basis for the A* search algorithm.

For grid-based search, for example, a common heuristic is the Manhattan distance,
which is a cell’s ∆x + ∆y from the goal.1 For example, the Manhattan distance at
(1, 2) in the grid above is (5 − 1) + (4 − 2) = 6. If you wanted to allow diagonal
movements, you could just use the Euclidean distance as your heuristic. The most
important part about the heuristic is that it must be optimistic—it should never
overestimate. More specifically, ∀x, y : h(x, y) ≤ truth, where the truth is how long
it really would take to reach the goal from (x, y). Following this rule will guarantee
that A* will find the optimal solution while doing the minimal amount of work.

To illustrate A*, we will use the same grid as before but with different obstacles. On
the left is the exploration after a greedy search, while on the right is the exploration
using A* with a Manhattan distance heuristic:

1 The term “Manhattan” distance comes from the fact that it’s a metric of the amount of blocks
you’d need to walk through Manhattan’s grid to get to your destination.

Kudrayvtsev 13

ku
dra

yv
tse

v
CHAPTER 3: Planning

0 1 2 3 4 5

0

1

2

3

4

S

G

g = 1

g = 2

g = 3

g = 4 g = 5 g = 6

g = 7

g = 7

g = 8

g = 8

g = 8

g = 9

g = 9

g = 9

g = 9

0 1 2 3 4 5

0

1

2

3

4

S

G

g = 1

g = 2

g = 3

g = 4 g = 5 g = 6 g = 7 g = 8 g = 9

h = 9

h = 8

h = 7

h = 6

h = 5

h = 8

h = 7

h = 6

h = 5

h = 4

h = 7

h = 6

h = 5

h = 4

h = 3

h = 6

h = 5

h = 4

h = 3

h = 2

h = 5

h = 4

h = 3

h = 2

h = 1

h = 4

h = 3

h = 2

h = 1

h = 0

Notice that A* only explores the exact cells it needs to. The incorporation of the
heuristic lets it automatically prefer cells that get closer to the goal. There is no sense
in exploring (2, 3), for example (marked in teal above) when it takes us further from
G than (3, 4).

The only difference between greedy search and A* is that we now track the f -value,
the sum of the accumulated cost and the heuristic:

f = g + h(x, y)

We now choose the node with the lowest f value rather than g value. That’s it! That’s
A*. I highly recommend watching this video on A* in action in a self-driving car sim-
ulation that combines localization and search to plan paths that traverse complicated
mazes and elaborate scenarios.

3.3 An Algorithm: The All-Seeing EyE

Recall our situation in Figure 3.1: we were unsure if we would have the time to get
ahead of (or behind) the truck to make the left turn. As we act, the world around us
changes. There is a chance that we won’t be able to make the turn, so it’s useful to
know what the optimal strategy is after we instead cross the intersection.

In fact, it’d be useful to know what the optimal strategy to reach a goal is at any
point on the map. Of course, we could perform A* from every cell, but that would
be computational overkill. Instead, we will explore an algorithm that uses dynamic
programming to determine the best action at every cell; this will be our “policy” map.
For example:

Kudrayvtsev 14

https://www.youtube.com/watch?v=qXZt-B7iUyw

ku
dra

yv
tse

v
ROBOTICS: AI TECHNIQUES

0 1 2 3 4 5

0

1

2

3

4

S

G

→
→

→
→

→ →
→

→
→

→ → →

→

→ →

→
→

→
→

→

→ →

To see how we can compute this policy map efficiently, let’s introduce a new concept:
value. The value of a cell is how much it costs to get to the goal from that cell.
Naturally, the value at the goal is 0. The value at its immediate neighbors is 1. At
their neighbors, 2, and so on. . . We can compute the value by recursively iterating
like this from the goal:

f(x, y) = min
x′,y′

[f(x′, y′) + 1]

where our initial values are:

f(x, y) =

{
0 if (x, y) is the goal
∞ otherwise

Kudrayvtsev 15

ku
dra

yv
tse

v
CHAPTER 3: Planning

Algorithm 3.1: A greedy search algorithm.

Input: A grid-like map of the world, M .
Input: A mapping of actions and their respective costs, F (a) 7→ c.
Input: The start and goal locations, S and G.
Result: An optimal path, P ∗.

/* A way to track the costs of closed nodes (0=open) in the world.

*/

closed := Zeroes(M.shape)
closed [S] := 1

/* Start the open list with our initial location */

p := (Sx, Sy)
g := 0
open := [(g, p)]

while true do
if open = ∅ then

return failure
end
ng, nx, ny := node in open with lowest g-score
g = ng
if (nx, ny) = G then

break
end
/* Store each unexplored action result in the open list. */

foreach valid action a := (dx, dy) do
pa := (nx + dx, ny + dy)
if closed[pa] = 0 then

ga := g + F (a)
closed [pa] := ga
Push(open, (ga, pa))

end
end

end

/* Now that we know we have a path with the lowest cost, simply

traverse the map from G→ S while choosing the cheapest node to

find it. */

P ∗ := ∅
p := G
while p 6= S do

p := min
n∈Neighbors(M [p])

closed[p]

Push(P ∗, p)
end
return P ∗
Kudrayvtsev 16

ku
dra

yv
tse

vMoving

And the danger is that in this move toward new horizons and
far directions, that I may lose what I have now, and not find
anything except loneliness.

— Sylvia Plath, The Unabridged Journals of Sylvia Plath

W ith a solid understanding of how we can sense the world around us, localize
our position within it, and create a plan to reach some goal location based
on our perception of the world. In this chapter, we’ll work through turning

that plan into actual actions our robot is capable of doing in order to step through
the plan. Specifically, we’ll be looking at how to generate smooth paths and how to
control our robot through a method called PID control.

4.1 Smoothing

Recall that in Planning, we worked with a 2 dimensional, discrete grid of the world,
and our plan had very rigid actions in mind. For example, we would need to fully
stop at (1, 0) and make a 90° turn before moving again. Ideally, we would be able to
keep moving the entire time and make smooth turns to traverse our path:

0 1 2 3 4 5

0

1

2

3

4

S

G

0 1 2 3 4 5

0

1

2

3

4

S

G

17

ku
dra

yv
tse

v
CHAPTER 4: Moving

Let’s formalize this idea. Our n-length path previously was a set of points denoting
each grid {x0, x1, . . . , xn−1}. To smooth it out, we’ll start with a new variable yi,
where yi = xi. Then, we optimize two things at once: the distance between each yi
and its corresponding xi, and the distance between each yi and its neighbor yi+1:

min

{
(xi − yi)2

(yi − yi+1)
2

If we optimized either of these individually, we would get either the original path or
no path at all, respectively. Thus by finding the perfect balance between the two, we
can generate a smooth path. We can also introduce a scalar, α, to vary the level of
“smoothness” we want. Thus, we try to minimize this cumulative distance:

ε(x0..n−1) = min
y0..n−1

[
(xi − yi)2 + α(yi − yi+1)

2
]

Now note that we still actually want to get to our destination. . . so we operate under
the additional constraint that y0 = x0 and yn−1 = xn−1.

We solve this via gradient descent. We rearrange our optimization process a bit
to iteratively reassign to yi. Each time, we add a term that is proportional (based
on α) to the deviation of our current yi from xi. Similarly, we add a term that is
proportional (based on β) to the deviation of our current yi from both of its neighbors,
yi−1 and yi+1:

yi = yi + α(xi − yi)
yi = yi + β(yi−1 + yi+1 − 2yi)

Empirically, values of α = 0.5, β = 0.1 apparently work well. The process of gradient
descent involves continually making this adjustment until the change in yi stops being
significant (indicating convergence). We formalize this approach in algorithm 4.1.

4.2 PID Controller

In this section, we’ll build up the blocks towards the idea of a PID controller.

4.2.1 P is for Proportional

Suppose we want to control a self-driving car. If we wanted to follow a straight
path, in a perfect world the obvious ideal action would be to not adjust the steering
whatsoever. That, of course, assumes we’re already on that path. . . ideally, we’d find
a way to get there, instead. A reasonable way to ensure that a car meets and then
follows a straight trajectory is by minimizing what’s called the crosstrack error,
which is a measure of how far we are from the goal path:

Kudrayvtsev 18

ku
dra

yv
tse

v
ROBOTICS: AI TECHNIQUES

Algorithm 4.1: Applying gradient descent to smoothing a path.

Input: An (n+ 1)-element path, p = {p0, p1, . . . , pn}, where each pi is actuall a
2-dimensional point (xi, yi).

Input: The proportionality factors, α and β.
Input: Optionally, a threshold that indicates convergence, τ = 1× 10−6.
Result: A smoothed path, q = {q0, q1, . . . , qn}, fixed at the endpoints, so

q0 = x0, qn = xn.

q := p
do

∆ := 0 // track the total change to the path

foreach i ∈ {0, . . . , n} do
δ := α · (qi − pi)
/* If we have neighbors, adjust accordingly... If you want a

cyclical path, do these absolutely, just operate with i

under (mod n). */

if i < n then
δ += β · (qi+1 − qi)

end
if i > 0 then

δ += β · (qi−1 − qi)
end
qi += δ // adjust smoothed point accordingly

∆ += |δx|+ |δy| // track absolute change

end
while ∆ > τ
return q

The idea is that there is a metric—the crosstrack error—that tracks the vector be-
tween the current trajectory and the reference trajectory; by minimizing this error
(staying proportional to the path), you follow intended trajectory. Mathematically,

Kudrayvtsev 19

ku
dra

yv
tse

v
CHAPTER 4: Moving

we model this using τ , a scalar that controls how “aggressive” we are in minimizing
the error. Given a crosstrack error ε, we’d say that α = τε, where α is the resulting
steering angle.

Unfortunately, a P-controller has a tendency to overshoot: intuitively, we can imagine
that on the last “step” in which the crosstrack error goes to zero, the car’s wheels will
still be oriented in previous direction.

It may eventually always be very close to the reference trajectory, but will never
converge perfectly. We would call this controller marginally stable. Larger values
of τ cause larger oscillations around the reference trajectory.

4.2.2 D is for Derivative

Is there a way eliminate this oscillation? We don’t really want to waver back-and-
forth around the ideal trajectory—that sounds like a recipe for motion sickness. The
trick is to incorporate the reduction of error based on our existing trajectory by using
the temporal derivative. Since we typically work over discrete chunks of time, we
calculate our derivative the same way, tracking some ∆t change in time between each
adjustment:

α = −τpε− τd ·
d

dt
ε where

d

dt
ε =

εt − εt−1
∆t

We now have two factors: the proportional gain τp and the differential gain τd. As
we get closer to our target trajectory, the rate of change in our error (that is, d

dt
ε)

decreases, causing a smoother approach:

Kudrayvtsev 20

ku
dra

yv
tse

v
ROBOTICS: AI TECHNIQUES

4.2.3 I is for Integration

Unfortunately, the world is imperfect, and if you’ve ever let your steering wheel go
on the highway you know how your car can veer off to one side ever-so-slightly. In
our scenario, this means our crosstrack error ε is offset by some systematic bias
introduced by mechanical errors, and our convergence to the target trajectory will
forever include that bias:

How can we take this bias into account? As humans, we notice drift over time and
compensate accordingly. Similarly here, we can accumulate the crosscheck error over
time and incorporate that into our steering angle:

α = −τpε− τd ·
d

dt
ε− τi

∑
t

εt (4.1)

Imagine we’ve “converged” α without accounting for the bias. Now, the last term
dominates, growing larger and larger because of the accumulated bias and correcting
the steering angle accordingly to reduce it!

This brings about our final PID controller, incorporating the proportional, integral,
and differential terms:

α = −τpε︸︷︷︸
proportional

−τd ·
d

dt
ε︸ ︷︷ ︸

differential

−τi
∑
t

εt︸ ︷︷ ︸
integral

Integral Windup

Over time, our reference trajectory will change. With each change, we will have a
new, large error (since we were just converging on a difference reference). This means
that our unchecked integral term will grow very large:

α = −τpε− τd ·
d

dt
ε− τi

∑
t

εt︸ ︷︷ ︸
biiiig

Eventually, the α recommended by the PID controller is physically meaningless to the
system. If we’re manipulating the velocity of a car, for example, the controller might

Kudrayvtsev 21

ku
dra

yv
tse

v
CHAPTER 4: Moving

want us to accelerate to ±120mph to optimally achieve a new goal velocity. However,
this is incredibly unsafe and physically impossible! Furthermore, our accumulated
error causes responses to reference changes to lag behind (see Figure 4.1, because the
τi term is still adjusting towards the previous reference (and all reference trajectories
before it!).

Figure 4.1: A temperature controller’s response without (left) and with (right)
protection against integral windup. Notice how the system on the left lags in
response to the change in the reference term. The CO term here (controller
output) is equivalent to α in our discussions (the image comes from here).

When the integral term grows too large to have a meaningful impact on the system,
we say the system suffers from integral windup. The easiest way to alleviate this
is simply to stop integrating when the controller output, α, reaches the minimal or
maximal value in the system.

4.2.4 Parameter Search: Twiddle

We have a PID controller equation now (4.1), but now we have three “magic numbers”
that represent the gain of each component: τp, τd, τi. How can we find the best values
for these?

The answer is basically to let the computer find them for you using the twiddle
algorithm, sometimes also called coordinate ascent. In essence, we “twiddle” each
value by a small amount with the aim of maximizing the overall “goodness” of the
parameter set. This idea of “goodness” comes from an input function that essentially
measures how well the parameters perform. For our purposes, we might choose a
function that returns the average crosstrack error over a period of simulation time.

A generic twiddling algorithm catered is described in algorithm 4.2; it should be
trivial to cater towards our three τs. Armed with such an algorithm, we can find the

Kudrayvtsev 22

https://controlguru.com/integral-reset-windup-jacketing-logic-and-the-velocity-pi-form/

ku
dra

yv
tse

v
ROBOTICS: AI TECHNIQUES

best set of τs for (4.1) in our specific system, and use that to follow a smooth path
(that we could have planned using A*) that we created earlier in section 4.1!

Kudrayvtsev 23

ku
dra

yv
tse

v
CHAPTER 4: Moving

Algorithm 4.2: The Twiddle algorithm for finding an arbitrary vector of pa-
rameters.

Input: A function measuring how good a parameter set is, G(p).
Result: The ideal set of (independent!) parameters, p∗.

/* A vector of proposed parameters and some potential changes to

each; obviously these vectors are the same size as the number of

expected arguments to G. */

p :=
[
0 0 . . .

]
∆p :=

[
1 1 . . .

]
ε∗ := G(p)

/* While we still have meaningful adjustments... */

while
∑

i (∆p)i ≥ 0.00001 do
/* Adjust each parameter independently. */

foreach pi ∈ p and di ∈∆p do
pi += di
ε := G(p)
if ε < ε∗ then // if it’s better, twiddle larger next time

ε∗ := ε
di := 1.1di

else // try twiddling the other way
pi −= 2di // 2× to undo the previous adjustment, too

ε := G(p)
if ε < ε∗ then // if it’s better, twiddle larger next time

ε∗ := ε
di := 1.1di

else // bad twiddle, so restore and twiddle less

pi += di
di := 0.9di

end
end

end
end
return p

Kudrayvtsev 24

ku
dra

yv
tse

vSimultaneous Localization and
Mapping

Come on and slam, and welcome to the jam!
Come on and slam, if you wanna jam!

— Space Jam, Quad City DJ’s

U ntil now, we have been tackling the automated navigation problem one step
at a time. We discussed how to sense the world around us, how to plan actions
based on those senses, and how to execute that plan. An important caveat of

our sensing algorithm was that we needed a model of the world—to find out which
door we were in front of when we did Localization, we needed to know which locations
had doors! In this final chapter, we will synthesize everything that we’ve learned into
the Slam algorithm, which will allow us to simultaneously localize ourselves within
the world and map out the world itself. We will be learning specifically about the
Graph SLAM method. There are many methods to SLAM, but this one is by far
the easiest to explain and digest.

The key principle to keep in mind is that a robot that is building a map of an unknown
area may lose track of where it is by the natural imperfections of its movement and
the overall uncertainty in its motion.

Let’s craft what will be our running example. Suppose our robot lives in the xy coor-
dinate plane and wishes to move from the origin to the right 10 units; for simplicity,
let’s assume we don’t want any movement in the y direction:

p0 = (0, 0)

+10

p1 = (10, 0)

x

y

In a perfect world, our position p1 after movement is (10, 0) as above, but we have

25

ku
dra

yv
tse

v
CHAPTER 5: Simultaneous Localization and Mapping

learned that because of the imperfections of the real world, we need to incorporate
a model of uncertainty into our position. Specifically, we have been modeling our
posterior position as a Gaussian centered around our ideal, expected destination:
p1 = p0 +

[
N (10, σx) N (0, σy)

]
.

Let’s break this down really quickly, though this should generally be a review of how
a Kalman filter models motion. We want to minimize the error in our change in x:

εx = (x1 − (x0 + 10))2

where x1 is our “true” position, and x0 + 10 is what we expected our position to be
in a perfect world. This becomes the mean of our Gaussian distribution:12

N (εx, σ) ∼ exp

(
(x1 − x0 − 10)2

−2σ2

)
(5.1)

We want a similar thing for y, except since we want no change in y, we want our error
(and thus Gaussian mean) to be as close to 0 as possible: εy = (y1 − y0)2. This gives
us:

N (εy, σ) ∼ exp

(
(y1 − y0)2

−2σ2

)
We’ve essentially modeled a bunch of circles around (10, 0) that represent the possible
locations for our robot after movement (with circles closer to (10, 0) being exponen-
tially likelier):

p0 = (0, 0)

+10

p1 = (10, 0)

5.1 Constraints

The product of these x and y probabilities is now our constraint: we want to maximize
the likelihood of our position p1 given our starting position p0. What Graph SLAM
does is define our probability using a sequence of these products. We model an
initial location constraint, often just p0 = 0 for simplicity, a series of relative
motion constraints (drawn below in red), and a series of relative measurement
constraints (drawn below in green) to some common observable landmark. These
relative constraints tie together each of our expected positions like a series of rubber
bands, as shown in Figure 5.1
1 Remember, σ is our variance, which measures how confident we are in our hardware; it affects
how far or close we expect x1 to be to our expected truth. For a very nice, expensive motor, σ
will be low.

2 We use ∼ instead of = here for brevity, avoiding the normalization coefficient, 1√
2πσ

, in front of
the exponential.

Kudrayvtsev 26

ku
dra

yv
tse

v
ROBOTICS: AI TECHNIQUES

p0

p1 p2

p3

Some landmark, L1

z1
z2 z3 z4

Figure 5.1: A visualization of Graph SLAM: the red motion constraints and
green measurement constraints form a graph whose edges are the motion and
measurement values.

The “solution” to our positions is would be the one that results in the smallest error
among all of these constraints. That sounds like a job for. . . a system of equations!

Suppose we have three positions (we stick to one dimension for simplicity), (x0, x1, x2),
and two universal landmarks L1, L2 observed at each of these positions. We can craft
a matrix that describes their relationship.

5.1.1 Motion Constraints

We start with our first movement, x0 → x1. Suppose we told our robot to move 5 units
(in all dimensions, for simplicity), so x1 = x0 + 5 in a perfect world, or x1 − x0 = 5.
We likewise know that x0 − x1 = −5. These become the first entries in the matrix,
whose rows and columns just correspond to all of our possible values:

x1 x2 x3 L1 L2

x0 1 −1 · · · −5 x0
x1 −1 1 · · · 5 x1
x2 · · · · · · x2
L1 · · · · · · L1

L2 · · · · · · L2

Suppose now that the motion between x1 → x2 = −4. How would this affect our
matrix? Naturally, it will affect all cells relating x1 and x2. We know that:

x1 − x2 = 4 (5.2)
x2 − x1 = −4 (5.3)

All we do is add this new information into our above matrix!
1 −1 · · ·
−1 2 −1 · ·
· −1 1 · ·
· · · · ·
· · · · ·

x0
x1
x2
L1

L2

 =

−5
9
−4
·
·

Kudrayvtsev 27

ku
dra

yv
tse

v
CHAPTER 5: Simultaneous Localization and Mapping

We can repeat this process for any number of motion constraints. How do we our
measurement constraints?

Quick Maffs: Sanity Check

The second row of our matrix now represents the following equation:

− x0 + 2x1 − x2 = 9 (5.4)

We haven’t directly related all three of these terms yet; is this relation even
valid? Let’s make sure. We know:{

x1 − x0 = 5

x1 − x2 = 4

Adding these together gives us (5.4), so it looks like the math checks out!

What’s interesting is that we can do a simple rearrangment of the above to
isolate and remove x1 and get a new relationship:

4 + x2 = 5 + x0

x2 − x0 = 1

We could theoretically introduce this additional row constraint into our
matrix: [

−1 · 1 · ·
]
=
[
1
]

Neat!

5.1.2 Landmark Constraints

Suppose we measure that the distance from x1 to some landmark L0 is 9 units. Just
as before, this creates a new pair of constraints in the matrix, but this time from a
measurement:

L0 − x1 = 9

x1 − L0 = −9

And again, as before, we just add these into our constraint matrix:
1 −1 · · ·
−1 3 −1 −1 ·
· −1 1 · ·
· −1 · 1 ·
· · · · ·

x0
x1
x2
L1

L2

 =

−5
0
−4
9
·

Kudrayvtsev 28

ku
dra

yv
tse

v
ROBOTICS: AI TECHNIQUES

Just like we did for the motion constraints, we can repeat this process for all of the
landmark measurements we make at each point. The more observations we have, the
more constrained our matrix is, and the more certain we can be of all of our positions.

5.2 Generalization

The method we’ve described above generalized to a linear system: ξ = Ωµ (thank
u Greece, very cool), where Ω describes our constraint scalars, µ describes our (un-
known) robot positions and landmark observations, and ξ contains the result con-
stants (the column vector in our running example above).

We can solve this exactly with a bit of linear algebra—inverting the matrix Ω via
something like numpy.linalg.inv—to find the best positions µ =

[
x0 x1 . . .

]
that

fulfill our constraints:
µ = Ω−1ξ

Example 5.1: Graph SLAM

Let’s run through an example to solidify our understanding. Suppose our
robot undergoes the following (ideal) motions:

x0 = −3
x1 = x0 + 5

x2 = x1 + 3

That is, it starts at x = −3, moves 5 units to the right, then 3 more units
to the right. For simplicity, suppose we have no observations. Filling out
our constraint matrix for the initial location constraint gives us:1 · ·

· · ·
· · ·

x0x1
x2

 =

−3·
·

Introducing the first motion constraint adds up to: 2 −1 ·

−1 1 ·
· · ·

x0x1
x2

 =

−85
·

Kudrayvtsev 29

https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html

ku
dra

yv
tse

v
CHAPTER 5: Simultaneous Localization and Mapping

Then, introducing our final motion constraint gives us: 2 −1 0
−1 2 −1
0 −1 1

︸ ︷︷ ︸

Ω

x0x1
x2

︸ ︷︷ ︸

µ

=

−82
3

︸ ︷︷ ︸

ξ

Finding the inverse, Ω−1, gives us:

Ω−1 =

1 1 1
1 2 2
1 2 3

Finally, solving µ = Ω−1ξ gives us the exact result we expected:1 1 1

1 2 2
1 2 3

−82
3

 =

 −8 + 2 + 3 = −3
−8 + 2 · 2 + 2 · 3 = 2
−8 + 2 · 2 + 3 · 3 = 5

5.2.1 Introducing Noise

Now in example and our matrix constructions above, we had perfect measurements.
But in our initial construction of the problem, we recognized that there was actually
some Gaussian noise perturbing our measurements!

Mathematically, the introduction of noise means that a “perfect” solution to Ωµ = ξ
no longer exists. However, the solution vector µ that we find is still the best ! It’s the
solution that minimizes the overall error in our system, meaning our “rubber bands”
(see Figure 5.1 again to refresh the analogy) had to stretch or shrink the least overall
amount.

Why is this true? We’ll have to refer back to the noise model of (5.1) earlier. When
we moved our robot a noisy 10 units, the uncertainty of our position was modeled
by a Gaussian. If we then told it to move another 5 units, we would be a little more
uncertain, right?

x0 = 0

+10 +5

Mathematically, we model this by multiplying our Gaussians:

x2 ∼ (x0 +N (10, σ)) · N (5, σ)

Kudrayvtsev 30

https://www.wolframalpha.com/input/?i=invert+%7B%7B2%2C+-1%2C+0%7D%2C+%7B-1%2C+2%2C+-1%7D%2C+%7B0%2C+-1%2C+1%7D%7D

ku
dra

yv
tse

v
ROBOTICS: AI TECHNIQUES

If we expand this expression out (refer to (5.1)) and squint hard enough, we can see
the rationale for our “add each constraint” approach. Note that this isn’t meant to
be mathematically rigorous, but rather demonstrate a bit of intuition behind why
µ is still the best possible positions given our constraints. To find the value that
maximizes the total probability of our measurements, we isolate our total errors:

x2 ∼ exp

(
(x1 − x0 − 10)2

−2σ2

)
· exp

(
(x2 − x1 − 5)2

−2σ2

)
∼ (x1 − x0 − 10)2

−2σ2
+

(x2 − x1 − 5)2

−2σ2

Recall: ex · ey = ex+y

so we can drop the exp and
maintain proportionality

∼ (x1 − x0 − 10)2

σ2︸ ︷︷ ︸
1st motion constraint

+
(x2 − x1 − 5)2

σ2︸ ︷︷ ︸
2nd motion constraint

drop the constants since they have
no bearing on the probability

maximization

Notice how we broke things down to essentially be a sum of constraints, and how
they’re both scaled by 1/σ2, which encodes our “certainty” in each measurement! If
we had different certainties at each point in time (perhaps we measure our position
with sonar at one point, and do a depth estimation with stereo cameras at another
point), we can incorporate this into the probability distribution of x2 as well by using
a separate σ1 and σ2 in each term.

We can essentially scale each constraint depending on our certainty in the accuracy
of said constraint (for both position and landmark measurements)! To loop back to
the matrix of constraints, this means that when we add in a new constraint we can
actually scale its impact by 1

σ
depending on our confidence. Remember, a smaller σ

indicates higher confidence.

For example, suppose we were very confident of our position after our first move in
our earlier example, with σ = 0.2. When we introduced our first motion constraint
in (5.2), then, we can scale it up by, say 1/0.2 = 5:

5x1 − 5x2 = 20

5x2 − 5x1 = −20

This means that constraint would be more impactful on the overall “equalization” of
the rubber bands of our various constraints, preserving this edge in the graph more
truthfully!

5.3 Summary

Let’s reflect on the beauty of what we’ve derived here. Given a series of measurements
about the world (which essentially map it out) and a series of approximations about

Kudrayvtsev 31

ku
dra

yv
tse

v
CHAPTER 5: Simultaneous Localization and Mapping

our current position in the world (which localizes us within the map), we can solve
for these values simultaneously because they all impose constraints on one another.

This is a pretty magical thing, and actually was not that complicated to create!
Armed with this algorithmic knowledge, a robot would be able to map an unknown
environment while also understanding where it is in that environment.

Kudrayvtsev 32

ku
dra

yv
tse

vIndex of Terms

A
A* . 13, 23

B
belief . 6

C
conditional probability 7
coordinate ascent . 22
cost function . 9, 11
crosstrack error 18, 22

G
gradient descent . 18
Graph SLAM . 25

H
heuristic . 13

I
integral windup . 22

K
Kalman filter . 26
Kalman filters . 8

L
localization . 5

M
Manhattan distance 13
marginally stable . 20
measurement update 7

N
normalize . 7

P
particle filters . 8
PID control . 17
PID controller 18, 21
posterior . 6
prior . 6
probability distribution 5

S
systematic bias . 21

T
twiddle . 22

U
uniform distribution 5

33

	Preface
	Introduction to Probability
	Localization
	Probability

	Sensing
	Planning
	An Algorithm: Greedy Search
	Heuristic-Based Search
	An Algorithm: The All-Seeing Ey'105

	Moving
	Smoothing
	PID Controller
	P is for Proportional
	D is for Derivative
	I is for Integration
	Integral Windup

	Parameter Search: Twiddle

	Simultaneous Localization and Mapping
	Constraints
	Motion Constraints
	Landmark Constraints

	Generalization
	Introducing Noise

	Summary

	Index of Terms

